
~iED Aj72 475 A COT CONSTRAINED SPEECH RECOGNITION SYSTEMS(U) AIR 1/I..
FORCE INST OF TECH WRIGHT-PATTERSON APE OH
W F OAVIDSON AU 8- AFIT/CI/NP S -iT

UNCLASSIFIED / 172 N

Ehhmhhmhhhhmml
smmhhhmmhhhl
mhsmhhmhhml
mhhEohhhEEEEEI

K=R

ws. 132

i.
= , IIIII,_.6

L...~ fli

111112 I 116 l.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

* . i

A COST CONSTRAINED SPEECH RECOGNITION SYSTEM

by

Walter F. Davidson

A Project Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF ENGINEERING

Approved:f4

~~\ SEP 1 6

Lester A. Gerhardt %lie
Project Advisor H

Rensselaer Polytechnic Institute
Troy, New York

LL~ August 1983

DISMIIUTION STA-"- A

"-~Yo5-for public rleae;! 0 9 1 3 1 30

SE.:LRITY CLA',SIFIC ATI.,IN 3F T,S. P AGE 'When risle F,,i,,,,j;

REPORT DOCUMENTATION PAGE BF.k (OMI'I.IPj.11-010.4)R~
I R~EPORT NtiMBER 12. GOVT ACCESSIONkV 3 REC;P'ENTSCATALOG N.MtEP

4.~~~~ ~~ TIL adSbil)5TYPE OF REPORT & c-ERiOO CO-,ERE0

A Cost Constrained Speech Recognition Systems THESIS/I9917AMN

6 PERFORMING 0'RG. REPORT NuMBER

7, AUTOR~s)6. CONTRACT OR GRANT NQMBER(s)

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREA & WORK UNIT NuMBERS

AFIT STUDENT AT: Rensselaer Polytechnic Institute

11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR Aug 1983
WPAFB OH 45433 13. NUMBER OF PAGES

85
14. MONITORING AGENCY NAME & ADDRESS(il different from, Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASS

15a. DECL ASSI FICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different tram Report)

18. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 W AF 0-71D SPi j Ir o..e * : siona1 D*,ejamm
Air Folce ci Technology (ATC4SEP 183 NVWgdbiaftersq'a Arm8 " 4&64

19. KEY WORDS (Continue on revers& side it necessary end identify by block number)

L --c ss io n F1,o-r
INTTS GRA&I zo
DTIC T.% B5
Uianounced

20. ABSTRACT (Continue on reverse side if necessary and Identify by block number) Im-t ftn tr

ATTACHED -

Availability Codes
Awviil and/or

D 1JAN 73 1473 ED. TION OF: 1 N 0 V A5 IS OBSOLETE UNCLASS

803 0 9 1 1SE6 ITY CLASSIFICATION OF TmIS PAGE !*h,e~ Date Enfrrord* I

ABSTRACT

.This paper describes the design, construction, and

evaluation of a microprocessor-based.cost-constrained word

recognition system. The system -uti- 1izes, seven bandpass

filters, logarithmically spaced, followed by envelope

detectors. The final algorithm uses eight uniformly spaced

time slices, and used dynamic programming for time warping,

with a weighted Tchebycheff distance. This system resulted

in 98% correct recognition for the ten digits, 0 - 9, of the

training group, and 96% correct recognition for the control

group.

The project demonstrated the necessity for an

improvement gained with time warping. Rabiner' s

Unconstrained Endpoint Local Minima algorithm was used to

perform the time warping. For the system used, it was found

that a weighted Tchebycheff distance measure performed -.

better than the Euclidean distance measure. The parameters

were weighted inversely proportional to their variances. The

results, however, were found to be relatively insensitive to

the weighting coefficients.

The additional hardware required for a typical

microprocessor system, costs under $150. The ability to

build the hardware for such a low cost was due to the use of

Reticon's Universal Active Filter R5620, which costs under

$7.00 each. i---,"

vi

-* -. -, -.. F -- S-- --- - " " . . . *

7:_

CONTENTS

Page

LIST OF TABLES.....................................ii

LIST OF FIGURES..................................... iv

ABSTRACT.. vi

1. INTRODUCTION....................................1

2. HISTORICAL REVIEW............................... 2

3. TECHNICAL DISCUSSION............................ 3
3.1.1 TYPES OF RECOGNITION.................... 4
3.1.2 PHONEMES................................. 5
3.1.3 DISTANCE MEASURES........................ 7
3.1.4 DYNAMIC PROGRAMMING..................... 9

3.1.4.1 THRESHOLDS....................... 13
3.1.5 FISHER DISCRIMINANT..................... 15
3.1.6 STANDARD DEVIATION WEIGHTING 19
3.1.7 K NEAREST NEIGHBOR...................... 20
3.1.8 COMPARISON OF CLASSIFIERS............... 21

3.2 ALGORITHM...................................... 25
3.2.1 NON-UNIFORM ALGORITHM.................... 27
3.2.2 UNIFORM ALGORITHM........................ 32

3.3 VARIABLE DIMENSION STATISTICS................. 34

3.4 SYSTEM... 35
3.4.1 HARDWARE................................ 36
3.4.2 SOFTWARE................................ 42

4. COST.. 43

5. TEST AND EVALUATION............................ 44
5.1 DATA BASE.................................. 44
5.2 RESULTS.................................... 46

5.2.1 CLASSIFIERS........................ 54
5.2.2 NON-UNIFORM VS UNIFORM 55

6. DISCUSSION AND CONCLUSIONS..................... 59

REFERENCES.. 62

APPENDIX A: TYPICAL WORDS......................... 63

APPENDIX B: PARTS LIST............................ 74

APPENDIX C: CONFUSION MATRICES.................... 76

APPENDIX D: PROGRAMS.............................. 85

LIST OF TABLES

TABLE Page

1 PAST PERFORMANCES 2

2 TECHNIQUES USED 3

* 3 PHONEMES...................................... 6

4 FILTER FREQUENCIES............................ 42

4 5 SOFTWARE CALLING TREE 43

6 EFFECTS OF COEFFICIENT WEIGHTING 48

7 RESPONSE WITHOUT INTERPOLATION 49

8 RESPONSE WITH INTERPOLATION 50

9 50 CLASS PROBLEM WITHOUT INTERPOLATION 51

10 50 CLASS PROBLEM WITHOUT INTERPOLATION,
SECOND BEST 52

11 50 CLASS PROBLEM WITH INTERPOLATION 52

12 50 CLASS PROBLEM WITH INTERPOLATION,
SECOND BEST 53

13 50 CLASS PROBLEM WITH INTERPOLATION,40
SPEAKERS 1,3,5,8,9 53

14 EFFECTS OF CLASSIFIERS 54

15 COMPARISON OF UNIFORM VS NON-UNIFORM SAMPLING.56

16 COMPARISON OF EUCLIDEAN VS TCHEBYCHEFF 57

17 50 CLASS PROBLEM, NON-UNIFORM VS UNIFORM 58

18 PARTS LIST.................................... 75

-i

:II

iii

-i

LIST OF FIGURES

FIGURE Page

1 MATRIX REPRESENTATION 4

2 COMPARISON OF BOUNDARIES 22

3 WORD 'SEVEN' 30

4 WORD 'SEVEN' AFTER LOCAL OPERATOR 31

5 BLOCK DIAGRAM OF PREPROCESSOR 37

6 AGC SCHEMATIC 38

7 CLOCK GENERATOR CIRCUIT 39

8 ENVELOPE DETECTOR CIRCUIT 40

9 FILTER RESPONSES 41

10 TYPICAL 'ZERO' 64

11 TYPICAL 'ONE' 65

12 TYPICAL 'TWO' 66

13 TYPICAL 'THREE' 67

14 TYPICAL 'FOUR' 68

15 TYPICAL 'FIVE' 69

1.6 TYPICAL 'SIX' 70

17 TYPICAL 'SEVEN' 71

18 TYPICAL 'EIGHT'.................................72

19 TYPICAL 'NINE' 73

20 TRAINING DATA SPEAKERS 1,2,3,4,5 77

21 CONTROL DATA SPEAKERS 1,2,3,4,5 78

22 TRAINING DATA SPEAKERS 1,3,5,8,9 79

23 CONTROL DATA SPEAKERS 1,3,5,8,9 80

24 TRAINING DATA NON-UNIFORM ALGORITHM 81

25 CONTROL DATA NON-UNIFORM ALGORITHM 82

iv

LIST OF FIGURES
(Continued)

F I GURE Page

26 TRAINING DATA UNIFORM ALGORITHM (8 SLICE) 83

27 CONTROL DATA UNIFORM ALGORITHM (8 SLICE) 84

.-I

V

4

1.0 INTRODUCTION

The purpose of this project was to design and implement

a speech recognition system for a limited vocabulary of

isolated words. The goal was to produce a system that could

do discrete word recognition on a microprocessor based

system. With the present day proliferation of microprocessor

systems, there are a wide variety of applications in which

word recognition could be useful if the cost was low enough.

These applications include numerical data entry and as a

non-tactile input method for the physically handicapped.

There have been many attempts to build systems to do

discrete word recognition. The most common present day

systems use linear predictive coefficients and do all of

their processing on a sampled version of the original voice

waveform. This leads to very little additional external

equipment to be added to the computer system, however, doing

all the processing after sampling requires a large amount of

computing power and is not practical for most microprocessor

systems.

Since many other researchers have worked on the problem

of limited vocabulary discrete word recognition, and

obtained very good results, why try another approach? The

goal of this project was to obtain a low cost recognition

system that could be added to a typical microprocessor

system. In addition to being low cost, it was desired to

have a system that was easy to implement and did not require

r"
L 1

any sophisticated test equipment to adjust. Due to these

constraints it was necessary to limit the amount of post

processing that was required. For this reason the approach

chosen was to use external hardware to do prefiltering

before the signal was sampled.

2.0 HISTORICAL REVIEW

The following table gives some statistics of past

systems designed to do word recognition of the ten digits, 0

to 9. [1]

REFERENCE SPEAKERS NUMBER OF CORRECT
UTTERANCES

Martin, Grunza 10 2400 99.7
1975

Scott 30 9300 98.0
1975

Coler, et al 20 20000 87.6
1977

Nippon Electric 4 2400 99.8
1978

TABLE 1. PAST PERFORMANCES

"In general, scores of from 99% to as high as 99.9% correct

recognition are possible in ideal laboratory conditions of

no noise, adequate talker training, and consistent talking

habits. However, actual field tests with ultimate users

rarely come close to such high figures, and 97% is a high

2

(and barely adequate) accuracy level for most field

conditions." (l1 This project was not trying to improve the

recognition rates that other researchers have obtained. The

goal was to try to obtain similar results using

a microprocessor based system with some low cost external

hardware.

3.0 TECHNICAL DISCUSSION

Many distinguished researchers have proposed some, now

classic, techniques for specific facets of pattern

recognition. This project combined several of these classic

techniques to obtain a word recognition procedure. Table 2

shows the major techniques tried for different levels of

processing.

SAMPLING WARPING DISTANCE CLASSIFICATION

UNIFORM DYNAMIC TCHEBYCHEFF K NEAREST
SAMPLING PROGRAMMING DISTANCE NEIGHBOR

WITH
NON-UNIFORM THRESHOLDING EUCLIDEAN FISHER
SAMPLING DISTANCE DISCRIMINANT

STANDARD
DEVIATION
WEIGHTING

TABLE 2. TECHNIQUES USED

Different combinations of these techniques, one from each

column, ,ere u- I in an attempt to obtain an optimum word

recogniti systcm. The following sections contain a

3

.%
.1

discussion of what word recognition is, an overview of the

structure of the English language, and a brief summary of

some of the major pattern recognition techniques employed in

this project.

3.1.1 TYPES OF RECOGNITION

Systems that are using isolated words, words separated

from other words by a period of silence, can be asked to

perform one of three different types of speech recognition,

WORD recognition, SPEAKER recognition, and WORD-SPEAKER

recognition. If the system is responding to more than one

speaker, the templates to be matched can be arranged in a

matrix of i different words said by the j different

speakers.

WORD

W W W ... W
11 12 13 li

W W W ... W
21 22 23 2i

W W W W
" 31 32 33 3i

SPEAKER

W W W ... W
jl j2 j3 ji

FIGURE 1. MATRIX REPRESENTATION

If the match results in a selection of the column number I

.4
4 !

through i, without regard to row, the routine is doing WORD

recognition. In word recognition, the speaker who said the

word is of no importance. For this reason, the matrix is

treated as if the different rows are simply representing

multiple utterances of the words spoken by the same speaker.

If the answer from the routine is the row number 1 through

j, the application is SPEAKER identification. In speaker

identification or recognition, the word spoken is not

important. In this case the matrix is treated as if the

columns are simply multiple samples of the speakers voice.

If the answer required is not only the word spoken, but also

the speaker who said it, the answer must be both the row and

column, and the application is WORD-SPEAKER recognition. As

is quite apparent from the matrix representation,

word-speaker recognition is the most difficult to

accomplish, since it entails both of the other types of

recognition.

3.1.2 PHONEMES

English can be described as a set of approximately 42

sounds called phonemes. These sounds can be further broken

down into vowels, diphthongs, semivowels, and consonants.

Each of the phonemes can be classified as either continuant

or noncontinuant. Continuant sounds are those sounds that

are produced by a fixed configuration of the vocal tract.

(2]

5

L. W.

CONTINUANT NONCONTINUANT

Vowels Diphthongs
IY bEEt AI bUY
I bIt 0I bOY
E bEt AU hOW
AE bAt EI bAY
A hOt OU bOAt
ER bIRd JU yOU
UH bUt
OW bOUght Semivowels
00 bOOt W Wit
U fOOt L Let
0 bOAt R Rent

Y You
Nasals
M Met Stops
N Net B Bet
NG siNG D Debt

G Get
Fricatives P Pet
voiced T Ten
V Vat K Kit
TH THing
Z Zoo Whisper
ZH aZure H Hat

unvoiced Affricates
F Fat DZH Judge
THE THe TSH CHurch
S Sat
SH SHut

TABLE 3. PHONEMES

The approach for this project was to concentrate on the

continuant phonemes. Continuant sounds are based on a fixed

configuration of the vocal tract. Since the configuration of

the vocal tract acts as a filter, a constant configuration

will result in constant ratios of spectral components.

Recognition is performed by obtaining the spectral energies

6

during these continuant phonemes, and matching these to the

reference words with the same pattern of continuant

phonemes. Even though noncontinuant phonemes are based on

transitioning of the vocal tract, part of the phoneme will

be based on a fixed vocal tract configuration. The proposed

approach will therefore attempt to match all stationary

sounds. The result is an attempt to match continuant

phonemes and the stationary portions of noncontinuant

phonemes.

3.1.3 DISTANCE MEASURES

The distance measure is a key element in the pattern

matching algorithm. This system uses eight different

features for pattern matching. A very important question is

the weighted importance of each of the parameters. The

averages and variances of these parameters must be estimated

in order to calculate the required weighting of each of the

parameters. The distance measures selected are that of a

weighted Euclidean distance and a weighted Tchebycheff

distance. The Euclidean distance measure is the proper

measure to be used when the noise associated with the sample

data is white and has a Gaussian distribution. The Euclidean

distance measure is the proper distance measure to use with

additive white noise, because the Euclidean distance

measure, which is a square law detector, finds the

intersection of the probability density functions when the

7

functions have equal variances, equal a priori

probabilities, and Gaussian distributions. The purpose of

the weighting is to normalize the different variances of the

parameters. This procedure of weighting the parameters by

the reciprocal of their variances is discussed by Duda and

Hart. [31 This technique of weighting measurements inversely

proportional to the variance estimates is a well known

technique in Kalman Filtering to obtain a better estimate of

a parameter in the presence of noise. To find the weighted

Euclidean distance between two vectors X and Y, the square

root is taken of the sum of the differences of each of the

components, multiplied by the weighting factor for that

component.

Euclidean = SQRT((wl*(xl-yl)**2) + (w2*(x2-y2)**2) + ...

Distance

To find the weighted Tchebycheff distance between two

vectors X and Y, the sum is formed of the absolute value of

the difference of the individual components multiplied by

the weighting factor for that component.

Tchebycheff = wl*(jxl-yll) + w2*(lx2-y2I) +.
Distance

These two distance measures are quite similar but the

difference is that the Euclidean distance is a square law

measure while the Tchebycheff distance is a first order

measure. The Euclidean distance measure will perform better

under conditions of white Gaussian noise. However, the

Tchebycheff distance measure is often chosen, because most

8

microprocessors do not have a built in instruction to

perform multiplication.

3.1.4 DYNAMIC PROGRAMING

Due to the inherent time variability of spoken words,

it is necessary to use some form of warping in order to

obtain a good match between two different utterances of the

same word. Warping is the non-linear stretching or

compressing of the word in order to obtain an optimal match

with the reference template. Dynamic programming is normally

used to perform this warping. There are many slightly

different forms of dynamic programming, depending on the

constraints placed on the problem.

The most naive approach is to treat each sequence as a

uniform spring. In this method the end points are exactly

matched by uniformly compressing or expanding the sequence.

There are two main problems in trying to use this approach

with this speech recognition algorithm. First, if the

approach matches endpoints exactly, one must assume that the

endpoints are the true endpoints. Isolated words normally

have fairly well defined endpoints, but if the word starts

or ends with a weak phoneme such as a fricative, the exact

endpoint will not be well defined. Second, this method of

uniform stretching, by definition, assumes that the increase

or decrease in the number of points occurs uniformly across

the sequence. In the Non-uniform algorithm, the points are

9

obtained non-uniformly from the detection of constant

portions of the filtered envelopes, and this assumption is

not valid. A small amount of noise during a portion of the

word can cause points to be added or deleted from one

portion of the sequence, while the remaining portions of the

sequence are unaffected. This assumption of uniform

stretching is not valid for the Uniform Algorithm either. In

the Uniform algorithm, points are obtained at uniform time

increments. A person is much more likely to draw out

continuant phonemes, so again it is possible to add

additional samples in part of the word without effecting the

rest of the samples.

The dynamic programming method used to perform the

warping for this project is a modification of Rabiner's

Unconstrained Endpoint Local Minima (UELM) routine. [41 This

method is a suboptimal form of dynamic programming. Instead

of attempting to minimize the entire path, the UELM method

only does local optimization. The advantage of this type of

optimization is that there are a smaller number of possible

paths to be examined. The reduction in the number of paths

reduces the amount of required calculations, and

consequentially the time that is needed for the routine to

be performed.

In the UELM routine a match is found by finding the

best fit of the next point from plus or minus DELTA points

of the last match with the reference. In this modified

10

procedure a match is looked for in only the positive

direction. This prevents the match from running backward

through the reference. That is, the match can not go halfway

through the reference template and then progress back to the

beginning of the template in case the word happens to be

symmetrical. The value of delta chosen determines how much

authority the dynamic program will have to expand or

compress the reference template. Delta is found

experimentally. No analytic method was found to calculate

the optimum value for delta.

In the Unconstrained Endpoint Local Minima recursive

equation, the index of the first template is used to drive

the algorithm. That is, each point of the driving template

is taken in order. As a result of only one of the templates

driving the algorithm, one should not expect to obtain the

same accumulated distance if the driving and reference

samples are interchanged. The importance of this difference

in distances is that in order to compare accumulated

-4 distances, the sample template should be the first or

driving template, while the reference template is second.

This allows the accumulated distances for different

references to be compared against the same scale.

One of the major constaints placed upon dynamic

programming algorithm is the treatment of endpoints. Some

methods constrain the endpoints of the sample and the

reference templates to match exactly. Most researchers using

1i

.

dynamic programming for speech recognition agree that this

is not a reasonable constraint for this application. Due to

noise and difficulties in exactly locating the word

endpoints, the endpoint position tend to vary from the real

endpoints. It is therefore not a reasonable constraint to

force points that can not be exactly determined to exactly

match each other.

If the method used does not constrain endpoints, it

will have to deal with the problem of one of the templates

reaching the end before the other. If the driving template

reaches the end first, most methods terminate and use the

distance accumulated to this point. This method either

regards the remaining portion of the reference as noise, or

considers the reference endpoint to be misplaced. A problem

occurs when the reference template terminates first. In this

case the dynamic program does not run through the entire

sample, the accumulated distance will not be based upon the

correct number of points.

One solution is to continue the method, duplicating the

last reference point as many times as necessary until the

end of the driving template is reached. This project calls

this method, termination with NO INTERPOLATION. A second

method, which generally gives better results, is to

terminate when the end of the reference is reached, and to

scale the resulting distance by (total points in

6 driver/point number of driver at termination). This method

12

-[

is called termination with INTERPOLATION. In Rabiner's

Unconstrained Endpoint Local Minima (UELM) method the

accumulated distance at point (n) of the driver is: 15]

D (n) = D (n-l,q) + min D(n,m)
A A

For: q-delta < m < q+delta

The total accumulated distance is generated by minimizing

the local distance between points but does not guarantee a

global minimum path. One important point to note is that

since m is constrained to be within plus or minus delta

points of q, the match can actually run backwards along the

reference. To eliminate this possibility for this project

the constraint was changed to q < m < q+delta. The UELM

algorithm was chosen for this project since it has been

shown by Rabiner to give results comparable to other methods

while being the least costly as far as computation time. [4]

That is, the UELM method which performs only a local

minimization gives results comparable to a global

minimization but requires much fewer calculations.

3.1.4.1 Thresholds

Thresholds can be used in various ways along with the

dynamic programming. In addition to eliminating bad matches

and matches that accumulate large errors early, thresholding

is very important for the decrease in time that occurs in

the dynamic programming routine. The simplest form of

13

.. 4 * - -
.L"~~ U '

thresholding is to have one maximum value that the distance

must be less than in order to be considered a valid match.

This method is very useful to eliminate words that are not

in the vocabulary.

The next type of threshold is based on the heuristic

principle that if a match has a high error value early on,

it will be a good candidate to eliminate. This is based on

the fact that the error function is a monotonically

increasing function. This type of threshold uses a graduated

threshold that is lower for early cycles of the dynamic

program and increases as the match proceeds. This type of

thresholding works best when the accumulated error distance

of the desired matches are concave upward, and the undesired

matches are concave downward. That is, the desired matches

have most of the error occur at the end of the word while

the undesired matches have most of the error occur at the

beginning of the word. When using a graduated threshold, it

is quite possible to have two matches that without

thresholding would obtain the same final error value, yet

with thresholding, the sample that accumulated its error

earlier would be eliminated. The thresholds must be high

enough not to eliminate the correct match. By proper

selection of thresholds the selection time can be

significantly reduced. The thresholds were adjusted by

setting them to a value that was twice the accumulated error

distance that occured during the match with the correct

14

template. Setting the thresholds this high prevented the

correct template from being eliminated by thresholding. Once

the thresholds were raised high enough to prevent the

elimination of the correct template, the exact vaule of the

threshold was not critical. If there is sufficient time, it

is far better to have the thresholds too high than too low

as this will prevent to possibility of the correct template

from being eliminated by thresholding.

3.1.5 FISHER DISCRIMINANT

The Fisher Linear Discriminate was used on this project

as one type of classifier. This classifier determines the

equation of a hyperplane that separates the two or more

classes of interest. [5] The data sample is then classified

by simply determining on which side of the hyperplane the

sample falls. In order to determine the dividing hyperplane,

the means and the covariance matrices of the classes must be

found. The Fisher Linear Discriminant function is a function

of the form:

T IF > 0 X=wl
H(X) =V X + Vo IF < 0 X = w2

This function will classify a sample X as belonging to class

wl if H(X)>O and class w2 if H(X)<O. The vector V and scalar

Vo are found by using the Fisher criterion:

15

"~~~~~~~~~~~~~~ -- -o -% -'.j -. -. -o -. - -q° - -"--.,.• / .. , ° • °

2 2 2
f =(ni n2) / (a +a

1 2

That is, the linear boundary between classes will fall

between the means, ni, of the two classes spaced inversely
2

proportional to the variances, a of the classes.

V =(.5S1 +.5S2) (Ml -M2)

where Si is the covariance matrix for class i and Mi is the

mean of class i.

T 2 2
*Vo =(M2 - Ml) (.5S1 + .5S2) (a M2 + a2 Ml)

2 2
a + Cy

2
where a is the variance of H(X) for class i and can be

i
calculated from:

2 T
a V Si V

The linear discrimiinant vector V and scalar Vo are

derived as follows:

Let f(nl,n2,a ao be any criterion function to be maximized.
1 2

Then22

f af af 3f 3n1 af an2
---------------------+ 2+---------------- ---

av 2 2 aV 3n aV 3n2 3V

1 2 2 2
af a f Dni 3f 3n2

1 2-2--------------- ---

2

16

77-7-77171 7
But

T
ni = VMi + Vo

2 T
a = V Si V

So

2o AV = 2 Si V

a ni/aV = Mi
2

ao/ Vo = 0

a ni/aVo = 1

Substituting
2 2

2(af/au) 1 (af/aa S2)V =Ml -M2 Df/an2
1 2

3f/ani + Df/an2 =0

Now using the Fisher criterion
2 2

f = (ni -n2) / a+ a
2 1 2 2

2((nl - n2)/(a + a)) (.S1 +.5S2) V =Ml -M2

1 2
But the scale factor 2((nl -n2)/(+))does not change the
slope, so it can be deleted.

-1
4.. V = (.5S1 + .5S2) (Ml M2)

Since
T

H(X) = V X + Vo =0

When
2 2

X M2 +a Ml

a a
And 1 2

T
Vo=-V X

17

Then 2 2

(M2 - Ml)T(.5Sl + .5S2) (a M2 + G MI)
Vo ------------------ -------

+
a a
1 2

The Fisher discriminant as defined above is a two class

problem. In order to generalize it to a multiclass problem,

the Fisher discriminant can be applied to all of the classes

by pairs. In order for X to be labeled as class i, the

following constraint must be met:

V X + Vo > 0 (j=l,2,...M; i<>j)
ij ij

where M is the number of classes. A difficulty that develops

with the linear discriminant for a multiple class problem is

that it is possible to have regions in space where no

consistent classification is possible. These regions, called

reject regions, indicate regions where there is no class i

in which the above constraint is met. For this reason linear

discriminant functions tend to perform poorly for large

class problems. In this project the Fisher discriminant is a

fairly small class problem for the number of input

parameters, so it worked quite well. That is, there were

approximately the same number of independent parameters as

there were classes to be separated. This meant that the

Fisher discriminant could form decision boundaries without

creating large reject regions.

4 18

3.1.6 STANDARD DEVIATION WEIGHTING

When using several different parameters for pattern

recognition, some form of normalization is required to take

into account the information content of the different

parameters. Normalization is used to take into account that

a parameter might be far from the mean, but it should not

contribute significantly to the error distance if it has a

very large standard deviation. One method discussed by Duda

and Hart to normalize data is to subtract the mean of the

class and divide by the standard deviation of each

component. This method is related, but distinctly different

from the weighted distance measures previously discussed,

which divide by the variance.

Xi - Mi

a
1

The total distance to the class i is found by taking the

Euclidean distances of the resultant components. The

boundaries between cl~sses will remain a straight line, with

the slope changed because of dividing by the standard

deviation.This weighting will prevent a single component

with a large variance that is far from the mean from

dominating the distance. [3] This technique of weighting

measurements inversely proportional to the variance

estimates is a well known technique in Kalman Filtering to

19

." " '

obtain a better estimate of a parameter in the presence of

noise.

3.1.7 K NEAREST NEIGHBOR

The K Nearest Neighbor rule is often used as a

classification technique when multiple copies of templates

are stored. In this project the K Nearest Neighbor rule is

used to classify a sample after using the Euclidean or

Tchebycheff distance measure when finding the error

distance. Instead of simply picking the template that has

the lowest error distance, the K Nearest Neighbor routine is

passed the error distances of all of the templates, and

assigns a sample X to class wi if the majority of tht :z

nearest matches are class wi. If K is fixed and the number

of samples is allowed to increase to infinity, then all of

the K nearest neighbors will converge to ci. The K Nearest

Neighbor rule selects ci if the majority of the K nearest

neighbors are ci, with probability:

K (K i K-i
iP (c i/X) [1-P(ci/x)]

i=(K+1)/2

This rule is an attempt to estimate the a posteriori

probability P(ci/X). One would like to use a large value for

K in order to obtain an accurate estimate. A contradictory

requirement is that all of the K matches be close to one

20

class. These two contradictory requirements force K to be a

small number compared to the total number of samples. [6]

3.1.8 COMPARISON OF CLASSIFIERS

The K Nearest Neighbor classifier is a non-linear

classifier while the Standard Deviation Weighting and Fisher

Discriminant are linear classifiers. This non-linearity of

the K Nearest Neighbor allows more freedom in the placement

of the decision boundary.

The following sample data will be used to show how each

of the classifiers forms the decision boundary. Figure 2,

shows the data points and the boundaries formed by each

classifier.

CLASS 1 CLASS 2
0, 2) (4, 2)
0, 6) (4,-2)

(-1, 4) (3, 0)
1, 4) (5, 0)

Means of each class are:

MI=(0,4)

M2=(4,0)

The covariance matrices for each class are:
T

S1 = E (X-M)(X-M)

Si 1 (1 0)

S2 (1 0)

21

Standard

Deviation

Fisher

CLASS 1

0 0 K
Nearest

Neighbor

/0

CLASS 2

..

FIGURE 2. COMPARISON OF BOUNDARIES

22

7"1

The standard deviations of each parameter are:

Ox=1

oy =2

The Standard Deviation Weighting method which subtracts the

mean and divides by the standard deviation for that

parameter has the following decision boundary.

2 2 2 2
"X -0 -4 1 x-4 ,,Y 01K 2 2!

which results in the linear decision boundary

y = 4x - 6

The Fisher Discriminant function can be found as follows

-1

V = (.5S1 + .5S2) (Ml - M2)

-1
V= (1 0(-)

V= (-4
1

T

2=20
2

0 41

T -1 2 2

(M2 - M1) (.5S1 + .5S2) (a 2M1 + 0M2)
VO - -- - - - - - - - -

2 2a I + a 201 02
(4 -4) 1(0)0

=6

23

-7 K- 7. T. K. 7

Boundary occurs when

T

V X + Vo = 0

y = 4x -6

This boundary happens to be equal to the Standard Deviation

weighting classifier boundary. This occurred because the two

parameters were independent. If they were not independent,

then the off diagonal terms in the covariance matrix S would

not be zero, and the boundaries would have been different.

The K Nearest Neighbor classifier forms a piecewise

linear boundary. For this example K=3, since that was the

value used latter in the final algorithm. The points where

the slope of the resulting boundary change are the locations

where a new sample point becomes closer than the previous

point. The following seven equations represent the decision

boundary.

For (,-) to (0,-.25)

2 2 2 2
(x+l) + (y-4) = (x-4) + (y+2)

y = 5/6 x - .25

For (0,-.25) to (.5,0)

2 2 2 2
(x-1) + (y-4) = (x-4) + (y+2)

y = .5 x -.25

For (.5,0) to (1.75,1.88)

2 2 2 2
(x-1) + (y-4) = (x-4) + (y-2)

y = 1.5 x -. 75

24

For (1.75,1.88) to (2.25,2.13)

2 2 2 2
(x-1) + (y-4) = (x-3) + (y-O)

y = .5 x + 1

For (2.25,2.13) to (3.5,4)

2 2 2 2
(x-O) + (y-2) = (x-3) + (y-O)

y = 1.5 x -1.25

For (3.5,4) to (4,4.25)

2 2 2 2
(x-O) + (y-6) = (x-3) + (y-O)

y = .5 x + 2.25

For (4,4.25) to (co,co)

2 2 2 2
(x-O) + (y- 6) = (x-5) + (y-O)

y = 5/6 x + 11/12

Figure 2 shows the 3 resulting decision boundaries plotted

with the sample data. The non-linearity of the K Nearest

Neighbor boundary allows more flexibility in the decision

boundary placement. Notice that the Standard Deviation

Weighting and Fisher Discriminant classifiers require

statistics for the data classes to be estimated while the K

Nearest Neighbor does not. Due to the above reasons, the K

Nearest Neighbor classifier was chosen for this project.

3.2 ALGORITHMS

Combining several of the above techniques produced the

Non-Uniform and the Uniform algorithms that were used on

25

this project. The major difference between the two

algorithms is in the determination of when time slices

should be taken.

When trying to find a match between two signals there

are three basic variations to which the algorithm should

remain invariant. The first common variation is that of

identical signals which differ in amplitude only. With this

amplitude variation one of the signals is simply a larger

version of the other. In speech systems this difference in

amplitude can occur because the word is spoken softer or

louder. In order to compensate for the variations in volume

of the spoken word, the pre-processor in this system

contains an automatic gain controlled amplifier. The AGC

amplifier attempts to maintain a constant amplitude

* regardless of how loud or soft the word was spoken.

The second variation that can occur is that of a time

shift. Since this system starts to sample when a set

threshold is exceeded, a slight noise or variation in

amplitude can change the point at which the sampling starts.

By performing a convolution with an edge operator, the

points of transition can be found. The convolution is

invariant for a time shift and therefore finds the desired

points of transition.

The third problem to be dealt with is that of comparing

signals with different numbers of samples. The signals that

are sampled can have different numbers of points since the

26

signals are sampled nonuniformly at points where the

composite gradient signal indicates stationarity. Noise in

the original signals can cause a different number of samples

to be taken. In order to match signals containing a

different number of points, the system uses dynamic

programming. The technique used is known as unconstrained

endpoint local minima. The way that the algorithm is set up

in this system is that the test utterance is compared to

each of the references, with the test utterance driving the

procedure. The first point of the test is compared with the

first, second, and third point of the reference. The best

match is then found using a weighted Euclidean distance. The

second point of the test is then compared with the best

point found in the preceding match plus the next two points

of the reference. Each point of the test utterance is

compared similarly until the end of the test utterance. This

method allows the program to find a low distance match of

signals with different numbers of points.

3.2.1 NON-UNIFORM ALGORITHM

This algorithm attempts to sample the parameters

non-uniformly at the points where the signals are wide sense

stationary. The goal of this algorithm, developed by the

author, was to make use of a local operator to find the

edges in the envelope detected waveforms so that the number

of time slices required could be reduced. The following is a

-27

.................................- -----

summary of the algorithm followed by an explanation for each

of the steps.

1. Take 128 samples of each of 8 envelope detected signals

at 10 ms intervals. The sampling is started when a

threshold is exceeded.

2. Run the local operator -1 -2 -3 -2 -1 0 1 2 3 2 1 across

each of the 8 sampled signals.

3. Form a composite signal from the average of the absolute

*! value of the 8 gradient signals.

4. Select slices from the original sampled data at places

where the composite gradient is close to zero.

5. Use the Unconstrained Endpoint Local Minima (UELM)

dynamic programming method to find the weighted

Euclidean distance to each of the reference patterns.

Use thresholds to reduce computation by terminating

unpromising matches.

6. Use K Nearest Neighbor with k=3 to find the most

likely match.

28

.'

'" ;-":"" " '" "" "'"'"""" " 9 "" *-" ' - .-'";" " . ,-:,,..- .. i . - . --- - - - -- - '

Step 1 which samples at 10 ms intervals is a compromise

between required storage and desired information. The

shortest English phoneme according to Votrax, a manufacturer

of voice synthesis hardware, is approximately 47 ms long. By

sampling at 10 ms intervals we can have several samples per

phoneme. The result is that the sampling window is 1.28

seconds long. Figure 3 shows a typical pattern of the 8

channels for the word 'seven'.

Step 2 which runs a local operator across the signals

is, in essence, a convolution looking for ramps in the

signals. Due to the lowpass nature of the envelope detected

signals, step transitions will not occur. The size of the

operator is matched to the size of transitions that occur.

By correctly matching the operator size, noise can be

smoothed out while at the same time accentuating the desired

ramp transitions. The local operator is performing the

function of a matched filter which indicates when a desired

waveform occurs.

Step 3 forms a composite signal that represents steady

state conditions of the original data. A steady state

condition is indicated by a value of the composite signal

near midscale. Figure 4 shows the individual signal with the

local operator applied on the lower 7 traces and with the

composite signal on the upper trace.

Step 4 selects the appropriate time slices from the 8

envelope detected signals for matching. These are time

29

0.
.

E
.

0

L
t

CA.

00

9*

L
0

aa

0
C-

-

OOZQ.4. ,0 .-] .' m ,,

'9..-,
" " : *

2 *2 " . 1 ' .

2- ' • *. .- ' J .

2.•• . . . •

2 *• 1 .

1.

:., .- . -'

1"
I

, " "
04

,*' . . ., .
0

2 ' " "* ' '1 2

'2 4 j
0

!''"
" .

'1' . . C .

-"2"'' '1
Ql /

' S . *,

• -. , . "' " "t "" '
I

2-]? '
*" (.2.4]

'.,'

1-' 3 3

-''..' > ',.'..' .'" .' .°: ".- :.'-.'- ,', ', .-. .-'.,' ._'.-'- ..- , ,L -- , .- , , - _ _,- -

V T .7 ..-

slices where the signals are wide sense stationary. This is

an attempt to insure that a time slice is taken through each

of the continuant phonemes.

Step 5 uses an unconstrained local minimum dynamic

programming technique to perform a warping in order to

permit the comparison of samples of different lengths.

Step 6 uses the K Nearest Neighbor classifier so that

more than one reference pattern can be compared. The K

Nearest Neighbor classifier was selected over the Fisher

Linear Discriminant and the Standard Deviation Weighting

classifiers, because the K Nearest Neighbor allows a

non-linear decision boundary which can better approximate

the optimum decision boundary.

3.2.2 UNIFORM ALGORITHM

The Uniform algorithm is basically the same as the

Non-Uniform algorithm with the exception that samples are

taken at fixed time increments, regardless of whether the

signals are constant or not.

1. Take 128 samples of each of 8 envelope detected signals

at 10 ms intervals. The sampling is started when a

threshold is exceeded.

2. Subsample the data to obtain the desired number of

samples.

pg 32

-.".

3. Use the Unconstrained Endpoint Local Minima (UELM)

dynamic programming method to find the weighted

Tchebycheff distance to each of the reference patterns.

Use thresholds to reduce computation by terminating

unpromising matches.

4. Use K Nearest Neighbor with k=3 to find the most

likely match.

One inherent advantage of the Uniform algorithm is that

for the same number of time slices, it is shorter.

Therefore, it can be performed quicker with less computing

power. This advantage only applies for the same number of

time slices. Normally one would expect to need more time

slices when using the Uniform algorithm in order to be

assured of having a time slice through each of the

continuant phonemes. The reason is that phonemes have

different lengths. In order to be assured of obtaining a

time slice through each continuant phoneme, it is necessary

in the uniform sampling case to sample at least as often as

the shortest phoneme of interest. This entire argument is

based on the assumption that the continuant phonemes contain

the information of interest.

33

3.3 VARIABLE DIMENSION STATISTICS

The varying rates at which words are spoken cause a

significant problem when trying to calculate the statistics

needed for the different recognition methods. The normal

definitions of averages and variance do not apply since the

dimensionality of the input parameters differs for different

samples of the same word. The dimensionality varies because

a particular time slice of one word does not represent the

same information as the same time slice through a second

utterance of the same word. It therefore became necessary to

define both what will be considered to be an average and

what is the measure of variance. Since the non-uniform

samples are handled by the dynamic programming in the

matching algorithm, the averaging should also be able to be

performed by using dynamic programming. In order to find the

average, the routine starts with one sample of the word and

runs the dynamic programming to find the best fit with the

sample to be averaged. This type of averaging is done with

each siccessive word to be averaged. This form of averaging

is highly dependent on two starting conditions, the sample

that drives the dynamic programming routine and the distance

measure. Since one of the reasons for performing the average

41
is so that the variances can be calculated for use with the

weighting of the Euclidean distance, and the averaging uses

this distance measure to perform the average, the procedure

must be iterative. The variances are calculated in a

34

S..A.r .' --- --, .

similar manner, using the averages generated by the

averaging routine to drive the dynamic programming. The

variance is ;alculated for each of the eight envelope

detected signals. The reciprocal of these variances are then

used as the weightings when finding the Euclidean distance

between points. Thus the two procedures of finding the

average and finding the variance are inseparably

interlocked.

3.4 SYSTEM

The initial computer system consisted of a

microprocesser system based on a Z-80. This system was

specifically designed by the author for ease of use with

hardware experiments. The heart of the system was a Z-80 CPU

running at 4MHz with one wait state. The memory consisted of

64K of Read/Write memory with the upper 2K shadowed by a

PROM with monitor routines. On line storage included two 8

inch single density floppy disk drives. The system had an

analog board capable of 8 channels of analog input in a

range of 0-5 volts, feeding an 8 bit analog to digital

converter. The data analysis and verification was done on an

IBM 3033 with the Michigan Terminal System operating system.

This system was used because of its ability to access and

store large data bases quickly. This system also had a large

library of programs that were useful in the analysis. This

system had a dial-up capability that allowed the target

35

system to transfer data over a 1200 baud modem to the IBM

3033.

3.4.1 HARDWARE

The external equipment consisting of amplifiers,

filters and envelope detectors was designed and built

specifically for this project by the author. The output of

the microphone is fed into an Automatic Gain Control (AGC)

amplifier. The output of the AGC amplifier is fed to seven

bandpass filters. The outputs of the seven bandpass filters

are buffered, envelope detected, and then buffered again.

This results in eight envelope detected signals, seven from

the bandpass filters and one unfiltered signal. The bandpass

filters are spaced on a logarithmic scale and range from

approximately 300 to 3000 Hertz. This range from 300 to 3000

Hz was chosen since this is the range of a typical voice

communication link such as the telephone. A block diagram of

the external hardware is shown in figure 5. The output of

this external equipment is connected to the 8 input channels

on the analog board. The microphone used was an electretI. microphone, Realistic #33-1050. Figure 6 shows the automatic

gain control (AGC) amplifier used on the input. The variable

gain element was an LM370. The output of the AGC circuit had

a level of approximately 5 volts peak to peak. The output of

the AGC was fed to the filters. The filters where Reticon

R5620 universal active filters set up in a bandpass

36

24 r-4 0 r 4 0 0O CL0 a 0 Q

>- >~ E O4>F-4 -' OF4-> OF- > O-4 F-4

-4 N v LO

H- H H - H H- H u
rZ 4r4r4r4rZ. r1Q

04

0

37

-4

LO

-4X

IL 0

±I

-F4

U3

11H

E-

E-4

xU

coo

H D4

391

Ln

CN

U

HH

0

Ln 1

400

- . * --. .

00

Ln CN

0 Z W
o i~z -4
o P4

414C

configuration. [71 These filters are second order switched

capacitor networks. The frequencies of the filters are

dependent upon an external clock. The clock generator

circuit is shown in figure 7. The external frequencies and

center frequencies of the bandpass filters are shown in the

following table.

FILTER CENTER EXTERNAL
FREQUENCY CLOCK

1 305 31.25KHz
2 447 62.5 KHz
3 653 125.0 KHz
4 977 125.0 KHz
5 1495 250.0 KHz
6 2236 250.0 KHz
7 3342 250.0 KHz

TABLE 4. FILTER FREQUENCIES

All of the filters were programmed for a Q of 10. A plot of

the filter responses is shown in figure 8. The output of the

filters are fed into envelope detectors shown in figure 9.

The envelope detectors had a time constant of 33 ms. The

signal after the detector is buffered by a unity gain

amplifier.

3.4.2 SOFTWARE

The programs in appendix D are the final programs

written by the author. Portions of the programs were written

in PL/M and assembly language.

42

INITIALIZATION RECOGNITION

INIT EAR

SAMP SAMP DIF3

TABLE 5. SOFTWARE CALLING TREE

The program INIT is used to obtain the templates that will

be used by the program EAR to recognize a word. The

procedure DIF3 is called by EAR and performs the dynamic

* programming. The procedure SAMP is called by both EAR and

INIT and is used to take 128 samples of the 8 envelope

detected waveforms at 10 ms intervals. The recognition

program takes 3-4 seconds to respond to a spoken word, and

requires under 8K of memory for the templates and the

program. The program does not require any special computer

architecture, so should be easily adapted to run on other

systems.

4.0 COST

The additional hardware required for this project can

be built for under $150. A large factor in the low cost of

this hardware was the availability of a new Universal Active

Filter from Reticon, the R5620. This filter costs under $7

and requires no external precision components. This system

is low cost when compared to the $1K-$5K cost of a

commercial system made by Votan, Lear Siegler, or Interstate

43

Electronics. The $1K-$5K cost of a commercial system is as

much as, or more than, the cost of the computer systems that

they would be attached to. This large investment has

deterred most users from adding a voice input capability to

their systems.

5.0 TEST AND EVALUATION

Once the hardware and software were designed and

implemented, the next step was to evaluate the system

performance. The testing was performed in a stepwise manner

in order to optimize portions of the algorithm.

5.1 DATA BASE

In order to analyze the performance of the non-uniform

algorithm, a data base was gathered. The data base consisted

of 10 samples of each of the ten words zero through nine,

from nine different speakers. This data base was gathered

using the target computer. The data was then transferred to

the IBM 3033 for analysis.

The first five speakers were adult males between the

ages of 20 and 40. The second four speakers were adult

females between the ages of 18 and 45. The data was gathered

directly on the system without any means of intermediate

recording. No intermediate recording was done of the data

to prevent the recording process from adding noise or

distortion to the desired signal. The data gathering was

44

*FS * A....' - . .

performed in a relatively quiet, furnished apartment. The

main noise source present was the air noise from the system

cooling fans.

In order to compare the performance of the Non-Uniform

to the Uniform algorithm, a second data base was gathered.

All of the tests in sections 5.2 and 5.2.1 were done using

data in the first data base while all of the tests in

section 5.2.2 were done using data from the second data

base. It was necessary to gather a second data base since

the original data base consisted of the time slices after

the non-uniform sampling. This second data base consisted of

both the non-uniform time slices and the uniform time

slices. Both sampling methods were used on the same

utterance so that a valid comparison could be made of the

two sampling techniques. While this was not ideal, it was

necessary to store only the time slices used in order to

limit the amount of required storage. The second data base

consisted of five speakers, one adult female and four adult

males. These speakers were a subset of the individuals used

in the first data base, recorded under the same conditions.

When analyzing the performance of the algorithms, the

data was used in two different tests. First, the data from a

single speaker was used. When using a single speaker, the

first five utterances of each of the ten words were

averaged to form that speakers template for that word. The

second five utterances of each of the words were not used so

45

I. -

that they could be kept as a control group. Each of the

utterances from that speaker was compared against the ten

templates. The second way the data was used was to compare

data from five speakers at a time. In this case, each

utterance was compared against 50 templates, the ten words

from each of the five speakers.

A confusion matrix is a matrix used to represent the

performance of a system. Each row in the matrix represents

the actual word spoken. Each column in the matrix represents

a word that the system picked as the answer. The entries in

a row represent the number of times that the system picked

the template, corresponding to the column number, as the

best match.

Confusion matrices were generated for the five speaker

tests which had the words zero thru nine, in order, repeated

five times, once per speaker, along each edge. These

confusion matrices show what word was recognized for each of

the actual spoken words.

5.2 RESULTS

The first area to be investigated was that of the

weighting coefficients. The first weighting to be used was 1

2 2 4 2 2 1 8. These are the weighting coefficient wl

through w8, in order, used with the weighted distance

measures. This set of weightings was experimentally

determined in the early stages of development to be a

46

reasonable starting point. The starting point did not really

matter since the procedure of finding an average and

calculating the variances was repeated until the weighting

coefficients were inversely proportional to the calculated

variances. The goal of the weighting was to weight each

parameter inversely to its variance. The following table

lists the Various weightings used. The final weighting

settled upon was 4 4 1 1 2 2 2 1 which resulted in 74%

correct recognition of the training group and 74% correct

recognition of the control group. With this weighting of 4 4

1 1 2 2 2 1 the desired weighting inversely proportional to

the variance was obtained. Since the variance was dependent

upon the average which was dependent on the weighting

coefficients, an iterative approach was necessary. The

iterative procedure consisted of using one set of weightings

to find an average, using this average to calculate the new

variances, and using these new variances to set the

weighting coefficients. This procedure was repeated until

the weightings converged to be inversely proportional to the

calculated variances. This problem of interdependence was

discussed in section 3.3.

47

°.

WEIGHTING TRAIN CONTROL

1 2 2 4 2 2 1 8 70%
2 2 1 2 1 2 2 4 70% 63%
4 2 1 1 1 2 2 4 68%
4 4 1 1 2 2 2 1 74% 74%

TABLE 6. EFFECTS OF COEFFICIENT WEIGHTING

As can be seen, the algorithm is not extremely sensitive to

the weighting coefficients. However, the last set of

weightings, which was approximately inverse to the

calculated variance, did obtain the best results. The

weightings were purposely kept as integer powers of 2 in

order to facilitate programming on the target computer.

An attempt was made to use different weightings for

different reference words. This resulted in a reduction of

the correct recognition rate to 63%-64%. This was not

totally unexpected since the errors being compared are

measured with rulers of different scales when different

weightings are used.

The next area to be investigated was that of

thresholding. Thresholds were determined from the training

data that would allow each of the training words to progress

through a match with the proper reference pattern without

reaching the threshold. These thresholds were then used in

the algorithm. The result was a 79% correct recognition from

the training set but a decrease to 66% correct recognition

from the control group. The rapid decline in the control

48

group was caused by the thresholds being too low, which

caused the correct template to be eliminated. When the

thresholds were raised to twice their lowest value, the

percentage of correct recognition returned to its former

value. This shows that although it is possible to use low

thresholds to change the outcome, the values low enough to

do this are quite critical. The real value of thresholding

for this project is the reduction in time for the algorithm

to run by eliminating matches that have very high errors

early. The results of how well the data clustered for each

speaker was determined by using an average only from that

speakers words. The first set of data is without termination

INTERPOLATION as discussed in section 3.1.4

SPEAKER TRAIN CONTROL
1 100% 92%
2 72% 68%
3 90% 74%
4 82% 78%
5 98% 94%
6 86%
7 90%
8 94%
9 90%

TABLE 7. RESPONSE WITHOUT INTERPOLATION

As is quite evident from the above, speaker 2 and 4 did not

cluster very well. This could also explain why the overall

recognition rate for the five speakers together was low.

49

The termination procedure was modified for the dynamic

programming algorithm. Previously the algorithm would

continue for the full length of the test utterance

regardless of whether the end of the reference pattern was

reached. The result was that if the test pattern is longer

than the reference, then the entire difference will be added

as error. With the modification, the procedure stops when

the end of the reference is reached. At this point, the

error is multiplied by the length of the test utterance and

divided by the point where the dynamic program terminated.

This results in a linear interpolation of the error at

termination.

SPEAKER TRAIN CONTROL
1 100% 94%
2 88% 78%
3 94% 82%
4 78% 76%
5 98% 98%

TABLE 8. RESPONSE WITH INTERPOLATION

When compared with the unmodified procedure, the results are

a higher or equal percentage of correct recognition in all

cases except one. The decrease in correct recognition that

occurred when the interpolation is not used is caused by the

mismatched endpoints contributing too high a percentage of

the error. The results of this test show that the method of

linear interpolation as advocated by Rabiner does provide

50

better results than dynamic programming without

interpolation.

The next test run was to use one template for each word

per speaker. In this case, this meant five speakers at ten

words each for a total of fifty reference templates. This

test allows the comparison of each of the three speech

recognition problems, Word recognition, Speaker recognition,

and Word-Speaker recognition. The following table summarizes

the results.

TRAIN CONTROL
WORD-SPEAKER 72% 60%
WORD 83% 78%
SPEAKER 76% 65%

TABLE 9. 50 CLASS PROBLEM WITHOUT INTERPOLATION

This test confirmed that Word-Speaker recognition is the

hardest type of speech recognition to perform. In order to

perform Word-Speaker recognition, the system must perform

both Word and Speaker recognition. It would therefore be

unreasonable to expect higher recognition rates on the

Word-Speaker problem than on the lowest of the Word or

Speaker recognition problems.

The 50 different error distances were rank ordered. The

second best match, second lowest error distance, was

examined to see if there was a good likelihood that some

further processing of the top two results could increase the

51

percentage of correct recognition. The confusion matrix was

done for the second best match, with the following results.

TRAI 4
WORD-SPEAKER 15%
WORD 59%
SPEAKER 26%

TABLE 10. 50 CLASS PROBLEM WITHOUT INTERPOLATION, SECOND BEST

The combining of the results gives 87% correct word-speaker

recognition in the first two answers out of 50 possible

choices. The combined recognition rate of 87% correct in the

top two responses out of 50 possible responses gave an

indication that other classifiers should be examined. These

classifiers are the subject of the tests shown in section

5.2.1.

The above confusion matrices were redone with two

changes. The dynamic programming routine termination

procedure was modified as discussed above, and the number of

time slices used as a ninth parameter. Figure 20 and 21 show

the resulting confusion matrices for the training and

control groups. The results were summarized as follows.

TRAIN CONTROL
WORD-SPEAKER 81% 66%
WORD 90% 81%
SPEAKER 86% 70%

TABLE 11. 50 CLASS PROBLEM WITH INTERPOLATION

52

07 V. 71AT. - - 7

The second best choice was also run for the training set.

TRAIN
WORD-SPEAKER 14%
WORD 61%
SPEAKER 25%

TABLE 12. 50 CLASS PROBLEM WITH INTERPOLATION, SECOND BEST

Combining the best two answers on the training data results

in 95% correct word-speaker recognition in the top two

answers. Again there is confirmation of the previous results

that linear interpolation is the superior termination

method, and that the second best choice out of 50 contains a

significant portion of the correct responses.

Changing the speakers and using data from speakers

1,3,5,8,and 9 to eliminate the suspect data from speakers 2

and 4 gave the following results:

TRAIN CONTROL
WORD-SPEAKER 89% 71%
WORD 95% 80%
SPEAKER 90% 78%

TABLE 13. 50 CLASS PROBLEM WITH INTERPOLATION, SPEAKERS

1,3,5,8,9

53

.

-
- . -

As can be seen from comparing the control WORD recognition

results, the change of speakers was essentially

insignificant.

5.2.1 CLASSIFIERS

Since the 50 class statistics showed that very high

percentage rates of correct recognition occurred in the top

two answers, it was decided to see if some other form of

classifier could improve the results. Different classifiers

were tried on the 10 class problems for each speaker. The

error distances for each of the words was used as the input

parameters. Three different methods of classification were

tried, K Nearest Neighbor (original method), Fisher Linear

Discriminant, and Standard Deviation Weighting. The

following table summarizes the results.

K Nearest Neighbor Fisher Standard Deviation
Speaker Train Control Train Control Train Control

1 100% 94% 94% 82% 100% 90%
2 88% 78% 82% 58% 86% 52%
3 94% 82% 96% 66% 100% 76%
4 78% 767 86% 72% 92% 70%
5 98% 98% 100% 78% 98% 82%

TABLE 14. EFFECTS OF CLASSIFIERS

As can be seen from the above table, the K Nearest Neighbor

method provided the best results. The Fisher and Standard

Deviation classifiers did not perform as well as the K

Nearest Neighbor classifier. This was the expected result,

54

as the Fisher and Standard Deviation classifiers have linear

boundaries between classes. The non-linear boundaries of the

K Nearest Neighbor classifier allows a closer approximation

to the intersections of the probability density functions

when the classes have equal a priori probabilities. Using

the intersections of probability density functions is the

well known technique of a Bayes Classifier which provides

the optimum decision boundary.

5.2.2 NON-UNIFORM VS UNIFORM

At this point it was determined that the non-uniform

algorithm had been heuristically optimized as well as

possible. The next step was to compare the change in

performance when the sampling method was changed from

non-uniform to uniform sampling. Five methods were compared,

non-uniform, uniform with 8 slices, uniform with 16 slices,

uniform with 16 slices with a delta of 6, and uniform with 8

slices with the dynamic programing delta increased from 3 to

5. Changing the delta of the dynamic program changes the

amount of authority that the dynamic program had to expand

or contract the reference template.

55

NON-UNIFORM UNIFORM UNIFORM UNIFORM UNIFORM
8 SLICES 16 SLICES 16 SLICES 8 SLICES

DELTA 6 DELTA 5
SPEAKER
1 TRAIN 94% 98% 98% 98% 92%
1 CONTROL 72% 98% 96% 98% 86%
2 TRAIN 96% 100% 98% 98% 86%
2 CONTROL 76% 98% 707 100% 70%
3 TRAIN 86% 94% 90% 92% 84%
3 CONTROL 80% 90% 84% 88% 88%
4 TRAIN 92% 100% 90% 90% 94%
4 CONTROL 82% 96% 84% 90% 90%
5 TRAIN 98% 100% 100% 98% 90%
5 CONTROL 96% 98% 98% 98% 94%

TABLE 15. COMPARISON OF UNIFORM VS NON-UNIFORM SAMPLING

The uniform 8 slice algorithm with the standard delta of 3

was found to be superior to any of the other methods. This

is especially apparent when looking at the control group

results. This combination of 8 slices with a delta of 3

provided the dynamic program enough information and

sufficient authority to perform the warping. This test

showed that increasing the number of time slices does not

necessarily mean better performance. The reason that

increasing the number of time slices does not necessarily

increase performance is that the allowable dynamic program

paths change. That is, paths that previously existed are no

longer permitted, and new paths that did not previously

exist are now allowed. The data also demonstrated that the

experimentally determined parameter delta, which controls

the authority of the dynamic program, had an experimentally

determined optimal value of 3. Increasing or decreasing the

56

7,

value of delta caused the results to decline. The

Non-uniform algorithm did not perform as well as expected.

This was most likely caused by the improper selection of the

non-uniform samples. Other schemes of picking time slices

should be considered.

The next test was to look at the differences between

the Euclidean and Tchebycheff distance measures. The

Uniform, Non-uniform algorithms, and a method without

dynamic programming were run with both distance measures in

order to compare the results.

NON-UNIFORM UNIFORM NO DYNAMIC
8 SLICES PROGRAMMING

EUCLID TCHEB EUCLID TCHEB EUCLID TCHEB
SPEAKER
1 TRAIN 94% 96% 90% 98% 64% 72%
1 CONTROL 72% 80% 96% 98% 54% 60%
2 TRAIN 96% 98% 98% 100% 24% 38%
2 CONTROL 76% 76% 92% 98% 36% 38%
3 TRAIN 86% 84% 84% 94% 54% 62%
3 CONTROL 80% 82% 78% 90% 42% 54%
4 TRAIN 92% 96% 96% 100% 58% 64%
4 CONTROL 82% 80% 90% 96% 64% 70%
5 TRAIN 98% 96% 98% 100% 72% 80%
5 CONTROL 96% 96% 96% 98% 64% 76%

* TABLE 16. COMPARISON OF EUCLIDEAN VS TCHEBYCHEFF

As can be seen from the above results, the best method still

is the Uniform algorithm run with 8 time slices and the

Tchebycheff distance measure. This test dramatically showed

the effects of the dynamic programming. Without some form of

57

- .- .. , .- , .-, .-, -- -. -. . . 0 j -, - . . .- . . . -, •• . . .,

time warping the results fell off drastically. This drastic

decline in correct recognition was another confirmation of

the inherent time variability of spoken words.

The last major test run was to run all five speakers

utterances against the templates of each of the speakers

words. The resulting confusion matrices are shown in

appendix C, and tabulated below.

NON-UNIFORM UNIFORM
8 SLICES

TRAIN CONTROL TRAIN CONTROL
WORD-SPEAKER 86% 63% 96% 87%
WORD 91% 86% 98% 96%

SPEAKER 90% 70% 97% 90%

TABLE 17. 50 CLASS PROBLEM, NON-UNIFORM VS UNIFORM

The Uniform algorithm with 8 time slices performed very well

for the intended word recognition problem giving 98% correct

responses for the training data and 96% correct for the

control data. A significant observed from these results is

the indication that the templates used were valid. That is,

the same templates performed almost as well on the control

data as the training data. This test showed that the final

Uniform algorithm with 8 time slices and a dynamic

programming delta of 3 was able to give comparable results

to the word recognition systems listed in section 2.0.

58

6.0 DISCUSSION AND CONCLUSIONS

The first part of this project after the hardware was

verified to be operational was to determine the weighting

factors to be used with the distance measures. An optimum

weighting was found, and it was also found that the

algorithm had a low sensitivity to changes in the weighting

coefficients. The next area of investigation was that of the

termination procedure for the dynamic programming section.

It was found that scaling by the stopping point as discussed

by Rabiner to be the superior method. Different classifiers

were used with the minimum distance classifier performing

the best. At this point it was determined that it would take

a major change to the algorithm to improve the results.

The changes made to the Non-Uniform algorithm resulted

in the Uniform algorithm. There were now three parameters

that could be changed in order to optimize the algorithm.

These three parameters were the number of time slices used,

the value of delta in the dynamic programming, and the

distance measure. No analytical method was discovered to

optimize the the value of delta. The value of delta was

experimentally determined by comparing the effects of

different values. In comparing all of the tests run, it was

shown that the Uniform algorithm using weighting

coefficients of 4 4 1 1 2 2 2 1, using 8 time slices, a

delta of 3, and the Tchebycheff distance measure, performed

the best for word recognition. This algorithm was arrived at

59

D-7

by optimizing each part of the algorithm separately.

The non-uniform and uniform algorithms were compared

with a straight forward method that did not use dynamic

programming or weighting coefficients. Without dynamic

programming or weighting coefficients the results fell off

dramatically. The reduction in correct recognition was due

to the varying rates at which words are spoken. Without some

form of compensation for the varying rates, poor results can

be expected. This comparison showed that the dynamic

programming was absolutely essential. Unfortunately the

non-uniform method did not perform as well as expected.

Methods of picking non-uniform time slices warrant further

investigation.

An important sidelight to this project was the

discovery of a method for finding the statistics of data

that had a varying number of parameters. The method was to

use the dynamic programing to calculate the statistics. The

results from the non-uniform algorithm were good enough to

show that this method of using dynamic programming to find

statistics provided a reasonable template, average, for the

varying parameters.

The proposed algorithm was implemented on the target

system. The program fulfilled the project objectives, with

the only drawback being that the program takes 3-4 seconds

to respond. This program could easily be sped up on a system

that had multiprocessing capability. However, most

60

.4

microcomputers available today do not have multiple

processors. Except for being a little slower than desired,

the programs performed very well and can easily be adapted

for use on any of the present day 8 bit microprocessors.

Appendix D shows the programs that were written. The program

INIT stores samples of the speakers voice to be used as the

templates. The program EAR performs the actual recognition.

The low cost, under $150, makes this hardware

configuration very appealing. Since the filters used

require no external precision components, only a clock, set

up was very easy. There was no tuning required of the

filters. The center frequency. was dependent on the digital

.2. inputs and the external clock. This meant that no precision

equipment was needed to align the filters. The programs and

hardware described in this paper can easily be implemented

to produce a practical, cost constrained speech recognition

system.

61

REFERENCES

1. Lea, Wayne a., Trends in Speech Recognition, Prentice
Hall, New Jersey, 1980. p63-65.

2. Rabiner, L. R. and R. W. Schafer, Digital Processing
of Speech Signals, Prentice Hall, New Jersey, 1978,
p38-88.

3. Duda, Richard 0. and Peter E. Hart, Pattern
Classification and Scene Analysis, Wiley, New York,
1973, p213-217.

4. Rabiner, Lawrence R., Aaron E. Rosenberg and Stephen
E. Levinson, 'Considerations in Dynamic Time Warping
Algorithms for Discrete Word Recognition', IEEE
Transactions on Acoustics, Speech, and Signal
Processing, Vol ASSP-26 No 6 DEC 1978, p575-582.

5. Fukunaga, Keinsosuke, Introduction to Statistical
Pattern Recognition, Academic Press, New York, 1972,
p100-119.

6. Duda, Richard 0. and Peter E. Hart, Pattern
Classification and Scene Analysis, Wiley, New York,
1973, p98-105.

7. EG&G Reticon, R5620 Universal Active Filter Data
Sheet, 1982.

62
-S•

APPENDIX A

TYPICAL WORDS

63

-. - . - - - . - 2 . -J.- - - ~ - . - . - - -. . - . - . - , . -

W uHr4E-4O j l
w0 'n '1 M

.ON

4f4

3 1 1

4. 24

1 64

- - - - - . - - . - - . . . --- .~.
A-.. - - ~ .~-. .~' - - *.j- - . - .. - - - - - - . - . . . - - - . -

4- S

QNE-'WUE-'OX
43 Lfl m (~l

* '0
-. 1-0'
* 1 1

.1 * 4 . J .

4 i 1 J
4 S z

4 . - I

I * I j .S 4 .1 *

* 1 . .
A. * I . . I
4 1 1 * A I

4 4 .

* S * ,

I 5 I
1 4

* *1 4 *~ 4
-f 1 .

I * I.4 4
* S I 4'

C f -. 4
4 1 * . I4 .1 A

1 *

4' A
4 1 * I
* 2 -4 .

1' J -
4 2 *~ C

2 1 4

f 0 '.0
1 4

1 . A.

4:

] S /
.4 1

A N
* -

4 p4

J J I (1)
* 4. '1

4 I
2 2

I I

4 4

1*

-t 4

-4 * .3 4 en N
2 *2 *

1~ * I 0
2 * I

2 .
2 * I

* 44
I I
~ 1 A, I C.)

2' . 4 4 I-.4
5 4 C. Pd

2 &
* Ag * ~%0

riI . 4 I
-I 4.

3 1 '4
2 II

Ii -
2 .4 p

'2 *' I

21 :1 N

2 ~' -A.* * 0* H

4-I
2 * , -A p *

65

* * . . * . . - - - , - A * - * *- A * .
aXA.L~ffiffiCnll S±~. -- *-- -~-. -A --------- * -. - -.

WOE- UE4
O r-n e" c v

"':"~~ -e' |

31 OD a

.' - ." *' I

S. J .

I WD 4 4
4E-4

4 j 4 1

4' 'I A

"' 5' -" ' ' ' "I
* . * . : , -

'2 " " " "4,:

-. -, . 2 * • .

2"2: * ' 3
4 : - 4 "

'''" 4; .'

-. " : . : } "..:, . 4'

-.: - , . I. ,

*" 2 - 1 7 ' ' ,

,,1 . 4 !:
1 4 . ! :

- .I -,:::
2" " , 1'r

J I

>1.4"

1. * -'.-.00
r..." ...,.. .- .' . '- ,-.. . .- -: .- ".- . . .1: . .- . - '. . .- . . - - . - ..- . .. " ; -

0 lz

f ON4

1' 2 3

40 1 14

4E-4

1"4

1"67

4.r ~ g J U ~ .. ':" °. " . + . r-w wri'r.r - r. -D -- -' fn . N - 4

I..N

_4

f
U)

9: 1' - 1 .'-2'

* " ' .'2

-t

2 V4

.

* " "2 * T : " 2 * ,

2" ' "1"3 : 4

2 1 . * I 1

' "2" +" " -' 4 ::

.. 4.. ,4,

" ,1. :, 4 :

,S.- .2 : :

. * 44'

'2' '1< " 4 lj"

4., ;

I%: , :+ (,
I

I
,, " 4 - : -

"4 " " : : I'I

:.'+ • .+ . ,

-4- . 3 4 . - - I,

1'" 4

* 2 : . 48

" '' ' . ' " ' " + ,' " - " ; ' " - -" + " -" ." " . " " - ." . ' ' . " - "" " " ; . ., i . +, . .I J. .1:

Q N E =, U , .. .N I
f* - . 4/

"3: "" ." 3.
. 3" ,,

-. , 4 / -* ,- , --

;3' " " O

1.' : ' 1 ,

.'-1- - -.

*? .. " ,J

t.oI

-. '2 - . .

2 "- " a".'-' ',

" "* 1 1, !

• "* 1 3 1 I

" *" a ,,J, I

3 3 , 4 -

"" 3 ;"-!:
3" 1 . 3 ' -',

": "- : N

3i•," , ": 1 .'

3; *I . ' !

3 *" ** ' 1 a I*-

., ' 3

A' I IN' - I -

-'- " , 1 #'' -

"3 H

I '.I

a 4 4 4 . 4 * 4 4 '4 4 4 4 - 4 . - - . . 4 - . 4 - . . 4 - 4 . 4 4 - . . 4 - . - . - - . . . 4 . 4 4. . - 4 . - 4 4 4 . 4 4 -

QZ~E-INOE4OCE
N '.0 LA (I (N -4U '0

4]. pI 0~. I 4 4 I
44444

1 1 1
2 - 13' 1

: 4 IIK
* I I
4 1 I
4 1 4

3 .* 0
-r-

2 4

4 A

1 1
4 .4

1 -I

~2 '.0

'I

A
3 *:

1 I I
1 1

2 1

4 . . I

2 .. II
4 1 4

2 * 4.
1 II ~1'

2 * I

2 * 4 4
4, 1 4 1 A 4 9

1 1 I 1: ~ (Y)
S . I

.4 S 4

'2 * 1'~ 44 ~ I x
5 44*I. I I
1 " * . U)* ' -2 * P 1

5 4.
2 4;

4. 4] 4 '1

* ' 4 I I
11 I I U

* A I H
1 4 '0

* 1 4 .- i
14 4 a ' 4

*~ 2 *~ I A

2 1 I
(I 4 1 4 I '.0

,~ .

~ 1 -1 CE

CD
3 4 H

_______________ 0
2 -

70

4 -.............. 4 - 4'~

* * * , .. * .in~. ~ *.. b**~, ,. . . ** .

Q(z~E-eizJOE-eOnZ
U) N '.0 in w CflC'J

3 1 '0

* *: 4 I
~' 2

2 .. 1

I a I
2 * .4 J

ii

1 4-j
1'

1~ I
4

_________________________ o
1~ 4 1 4

1
4 *

I . .

I I
a I

A 'A

*, 1 4 II
'.04

11

I '1 4 I

1
3 1

1 N
4 1

3 4 .4

2 a . ~
1 4

4 3 4 11

3 4
3 4

] a

4
4

3 . 1 4

t . . (N

3 * I . I z
2 I

I N
.~ I £12

) *~ 1 . I -
2 1 I I

a 2 4 2
9' * I

4
4 7 I (~)

1 .. .9 I-I

1 . .

*1 *' 1' . a
2 :' .

7 -. 1 4 . I4 . I I
7' 1 ' .~ . , 1* N

'2 1 -
1 4
* N

2 ': *

1 .

71

4 1-
3 I-

*o 1 4 o" I,-.

4 ,

1* I c'

4 f • "I

a 1"

2" S. I
i'-] ' Y ;" ;, !

S. .]". '0
o.,)

;. , ,: t J
:. , € :,
;34 " ,

It 4 :]°•

1 I :

*:: 4
• : -.. , .

" "4 I0 ,.

• , ! . '"A ,c "

"u ,f 4.

" ..4 . ,'
t . .. |. 1 . I' ,,

2 | ". ! ,• : 1 *1 I
€ ' I cc

2? " 1 .,I' L

'2~' 1' * '42

00t 04

t .it

4 I4

3 73

i

APPENDIX B

PARTS LIST

74

--.

PARTS LIST

AGC
ohms

Cl .luF Ri 1K
C2 .luF R2 lOOK
C3 luF R3 1K
C4 .luF R4 1K
C5 lOuF R5 10K POT

R6 1K
Dl 1N4148 R7 10K

IC1 LM348
1C2 LM370

CLOCK GENERATOR
ohms

1C3 7404 R8 270
1C4 74LS393 R9 270

XTAL 1MHz

ENVELOPE DETECTOR

C6 .luF
C7 luF

D2 1N4148

ICS LM348

ROohms
RO1K

RMl 10K
R12 1K
R13 33K

FILTER

RETICON R5620

6 TABLE 18. PARTS LIST

75

APPEND IX C

CONFUSION MATRICES

76

.4

0 5000
1 0500
2 005000
3 000500 "

4 00004000000000000000000000000000000000000000100000
5 00000400000000010000000000000000000000000000000000
6 0000005000
7 0000000500
8 000000005000
9 000000000500
0 000000000040000000CO00000000000000000000000000001
1 00000000000400000000010000000000000000000000000000
2 00000000000041000000000000000000000000000000000000
3 00000000000011000000000000000000000000000002000001
4 00001000000000200000000000000001001000000000000000
5 00000000010001030000000000000000000000000000000000
6 00000000000000004000000000000000000010000000000000

7 00000000000000000400000000000000000000000000000100
8 00000000000010000040000000000000000000000000000000
9 00000000000000000004000000000000000000000000000001
0 00000000000000000000400000000000000000000000001000
1 00000000000001000000040000000000000000000000000000
2 00000000000000000000005000000000000000000000000000
3 00000000000010000000000400000000000000000000000000
4 00001000000000000000000030000000000000000000100000
5 00000000000010000000000004000000000000000000000000
6 00000010000000000000000000400000000000000000000000
7 00000000000000000000000000050000000000000000000000
8 00000000000000000000000000005000000000000000000000
9 00000000010000000000000000000400000000000000000000
0 00000000000000000000100000000010000020100000000000
1 00000000000000000000000000000003000000010100000000
2 00000000000010000000000000000000310000000000000000
3 00000000000000000000000000000000050000000000000000
4 00000000000000000000000000000000005000000000000000
5 00000000000001000000000000000000000200020000000000
6 00000000000000001000000000000000000040000000000000
7 00000000000000000000000000000000000004010000000000
8 00000000000000000000000000000000000000500000000000
9 00000000000000000000000000000000000000050000000000
0 005000000000
1 000500000000
2 00000000000012000010000000000000000000000010000000
3 0005000000
4 00001000000000000000000000000000000000000000400000
5 00000000000000010000000000000000000000000000040000
6 00000000000000000000000000100000000000000000004000
7 000500
8 00000000000001000000000000000000000000100000000030
9 0005

FIGURE 20. TRAINING DATA SPEAKERS 1,2,3,4,5

77

0 5000

1 04000000000000000000010000000000000000000000000000
2 00300000000000000010000000000000000000100000000000
3 000500
4 00002000000000000000000020000000000000000000100000
5 00000300000010010000000000000000000000000000000000
6 0000005000
7 0000001400
8 00000000300000000020000000000000000000000000000000
9 000000000500
0 00000000005000000000000000000000000000000000000000
1 00000000000200010000000000000000000100000000000001
2 00000000000020000000000000000010000000200000000000
3 00000000000000000000000000000000000000010002000002
4 00002000000000000000010000000001001000000000000000
5 00000000000000050000000000000000000000000000000000
6 00000000000000005000000000000000000000000000000000
7 00000000000000000400000000000000000000000000000100
8 00000000000000000040000000001000000000000000000000
9 00000000020000000002000000000000000000000000000001
0 00000000001001000000300000000000000000000000000000
1 00000000000000000000040000000000000000000000000001
2 00000000000001000000003000000000000010000000000000
3 00000000000000000000100400000000000000000000000000
4 00000000000000000000100020000000000000000000200000
5 00000000000000020000000003000000000000000000000000
6 00000010000000002000000000200000000000000000000000
7 00000000000000000000100010120000000000000000000000
8 00000000000000000000000000005000000000000000000000
9 00000000020001000000000000000200000000000000000000
0 00000000000001002000000000000020000000000000000000
1 00000000000000000000000000000004000000010000000000
2 00000000000000000000000000000000500000000000000000
3 00000000000030000000000000000000020000000000000000
4 00000000000000000000000000000000005000000000000000
5 00000000000001000000000000000000000200020000000000
6 00000000000010002000000000100000000010000000000000
7 00000000000000000000000000100000000004000000000000
8 00000000000010000000000000000000000000400000000000
9 00000000000002000000000000000000000000030000000000
0 005000000000

• 1 01000000000000000000000000000000000000000400000000
2 00000000000001000000000000000000000000000040000000
3 00000000000000000000000000000000000001000004000000
4 00001000000004000000000000000000000000000000000000
5 00000000000002010000000000000000000000000000010001
6 00000000000000001000000000100000000000000000003000
7 000500
8 00000000000000000010000000000000000000000000000040
9 00000000010000000000100000000000000000000000000003

FIGURE 21. CONTROL DATA SPEAKERS 1,2,3,4,5

78

0 5000
1 0500
2 005000
3 000500
4 00004000000000000000000010000000000000000000000000
5 00000500
6 0000005000
7 0000000500
8 000000005000
9 000000000500
0 00000000004000000000000000100000000000000000000000
1 00000000000400001000000000000000000000000000000000
2 00000000000050000000000000000000000000000000000000
3 00000000000004000000000000000000000000000010000000
4 00001000000000300000000010000000000000000000000000
5 00000000000000040000000000000000000000000010000000
6 00000010000000004000000000000000000000000000000000
7 00000000000000000500000000000000000000000000000000
8 00000000000000000050000000000000000000000000000000
9 00000000010000000004000000000000000000000000000000
0 00000000000000000000500000000000000000000000000000
1 00000000000000000000050000000000000000000000000000
2 00100000000000000000004000000000000000000000000000
3 00000000000000000000000500000000000000000000000000
4 00001000000000000000000040000000000000000000000000
5 00000000000000000000000005000000000000000000000000
6 00000000000000001000000000400000000000000000000000
7 00000000000000000000000000050000000000000000000000
8 00000000000000000000000000005000000000000000000000
9 00000000000000000000000000000500000000000000000000
0 00000000000000002000000000000020000000000000000010
1 00000000000000000000000000000005000000000000000000
2 00000000000000000000000000000000400000000010000000
3 00000000001000000000000000000000040000000000000000
4 00001000000000000000000000000000004000000000000000
5 00000000010000000000000000000100000200000000010000
6 00000000000000001000000000000000000040000000000000
7 00000000000000000001000000000000000004000000000000
8 00000000000000000000000000000000000000500000000000
9 00000000000000000000000000000100000000040000000000
0 005000000000
1 00000000000000000000010000000000000000000400000000
2 0040000010
3 00
4 00500000
5 00050000
6 00000000000000001000000000000000000000000000004000
7 001400
8 0050
9 0005

FIGURE 22. TRAINING DATA SPEAKERS 1,3,5,8,9

79

- - . - - .- -.

0 5000
1 04000000000100000000000000000000000000000000000000
2 00400000000000000000000000001000000000000000000000
3 000500
4 00002000000000100000000010000010000000000000000000
5 00000300000000000000000000000100000000000010000000
6 0000005000
7 0000001400
8 000000005000
9 000000000500
0 00000000003000000000100000000000000000000010000000
1 00000000000400000000000000000100000000000000000000
2 00000000000040001000000000000000000000000000000000
3 00000000001004000000000000000000000000000000000000
4 00000000001000200000000010000010000000000000000000
5 00000100000000030000000001000000000000000000000000
6 00000010000000004000000000000000000000000000000000
7 00000000000000100200000000000000000001000000001000
8 00000000000000000050000000000000000000000000000000
9 00000000030000000002000000000000000000000000000000
0 00000000000000000000500000000000000000000000000000
1 01000000000000000000040000000000000000000000000000
2 00000000000000000000005000000000000000000000000000
3 00000000000000000000000500000000000000000000000000
4 00003000000100000000000010000000000000000000000000
5 00000100000000000000000002000100000000000000000001
6 00000000000000001000000000400000000000000000000000
7 00000000000000000000000000050000000000000000000000
8 00000000000000000000000000005000000000000000000000
9 00000000010000000000000000000300001000000000000000
0 00000000000000000000000000000020000010000000000020
1 00000000000100000000000000000003000000000100000000
2 00000000000000000000100000000000300000000010000000
3 00000000001000000000000000000010030000000000000000
4 00000000000100000000100000000100002000000000000000
5 00000100010000000000000000000100000200000000000000
6 00000020000000001000000000000000000020000000000000
7 00000000000000000000000000000010000003000010000000
8 00000010000000000000000000000000000000400000000000
9 00000000000000000000000000000110000000030000000000
0 004000000100
o 00000000000000000000000001000000000000000300010000
2 00000000000000000000000000000020000000000020001000
3 002003000000
4 3 00500000
5 00000000000000000000000001000000000000000000040000
5 000
6 00000010000000000000000000000000000000001000003000
7 00011300
8 0050
9 0005

FIGURE 23. CONTROL DATA SPEAKERS 1,3,5,8,9

80

- .

0 40000000000000100000000000000000000000000000000000
1 0500
2 005000
3 000500
4 00005000
5 00000300010000000000000000000000000000010000000000
6 00000040000000000000000000000000000000000000001000
7 0000000500
8 000000005000
9 000000000500
0 00000000004000000000000000000000000000000000001000
1 00000000000500000000000000000000000000000000000000
2 00000000000050000000000000000000000000000000000000
3 00000000000004000001000000000000000000000000000000
4 00001000000000400000000000000000000000000000000000
5 00000000000000040000000000000000000100000000000000
6 00000000000000004000000000000000000000000000001000
7 00000000000000000500000000000000000000000000000000
8 00000000000000000050000000000000000000000000000000
9 00000000000000000005000000000000000000000000000000
0 00000000000000000000500000000000000000000000000000
1 00000000000000000000050000000000000000000000000000
2 00000000000000000000005000000000000000000000000000
3 00000000000000000000000500000000000000000000000000
4 00000000000000000000000040000000001000000000000000
5 00000000000000000000000005000000000000000000000000
6 00000000000000000000000002030000000000000000000000
7 00000000000000000000000000020000000001010000001000
8 00000000000000000000000000005000000000000000000000
9 00000000000000000000000000000400000000010000000000
0 00000000000000000000000000000050000000000000000000
1 00000000000000000000000000000005000000000000000000
2 00000000000000000000000000000000410000000000000000
3 00000000000000000000000000000000040000000000000010
4 00000000000000000000000000000000005000000000000000
5 00000000000000000000000000000000000500000000000000
6 00000002000000000000000000000000010010000000001000
7 00000000000000000000000000000000000004000000001000
8 00000000000000000000000000000000000000500000000000
9 00000000000000000000000000000100000000040000000000
0 005000000000
1 00000000010000000000000001000000000000000300000000
2 00100000000000000000000000000000000000000040000000
3 0004000010
4 00002000000000000000000000000000000000000000300000
5 00050000
6 00000001000000001000000000000000000000000000003000
7 000500
8 0050
9 0005

FIGURE 24. TRAINING DATA NON-UNIFORM ALGORITHM

81

P6 ' '. ' ° ° • " " " -.°"" .

0 20000000000000000000000000000020000000000000001000
1 01000100000000000000000000000001000000000200000000
2 00400000000000000000000000000000100000000000000000
3 00040000000000000000000000000000010000000000000000
4 00003000000000000000000000000000001000000000100000
5 00000300000000000000000002000000000000000000000000
6 00000010000000000000000000000000000000000000004000
7 00000103000000000000000000010000000000000000000000
8 00000000400000000000000000001000000000000000000000
9 00000100030000000000000000000000000000000000010000
0 00000000002001000000000000000000100000000000001000
1 00000000000000050000000000000000000000000000000000
2 00000000000050000000000000000000000000000000000000
3 00000000000004000001000000000000000000000000000000
4 00000000000000300000000000000000002000000000000000
5 00000000000000050000000000000000000000000000000000
6 00000000000000003000000000000000100010000000000000
7 00000000000000000300000000000000000001000000000100
8 00000000000000000050000000000000000000000000000000
9 00000000000001020002000000000000000000000000000000
0 00000000000000000000500000000000000000000000000000
1 00000000010000000000010000000000000000030000000000
2 00000010000000000000002000000000200000000000000000
3 00000000000000000000000400000000010000000000000000
4 00000000000000000000000040000000001000000000000000
5 00000000000000010000000003000000000100000000000000
6 00000000000000000000000000030000000000000000002000
7 00000001000000000000000000000000000001010000001100
8 00000000100000000000000000004000000000000000000000
9 00000000000000000000000000000200000000030000000000
0 00000000001000000000000000000040000000000000000000
1 00000000000000000000010001000001000000000000020000
2 00000000000000000000000000000000500000000000000000
3 00000000000000000000000000000000050000000000000000
4 00000000000000000000000000000000002000000000300000
5 00000000000000010000000000000000000400000000000000
6 00000000000000000000000000000000000030000000002000
7 00000002000000000000000000000000000012000000000000
8 00000000000000000000000000002000000000300000000000

• 9 00000000000000000000000001000000000000040000000000
""0 005000000000o 00000000010000000000000000000000000000000400000000

1 00000000010000000000000000000000000000000400000000
2 00010000000000000000000000000000000000000030000000
3 00010000000000000000000000000000010000000003000000
4 00005000
5 00050000
6 00000001000000000000000000000000000000000000004000
7 00000001000000000000000000000000000000000000000400

;i 8 00000000000000000000000000000000000000100000000040

9 0005

FIGURE 25. CONTROL DATA NON-UNIFORM ALGORITHM

82

,= ----------

0 40000000000000000001000000000000000000000000000000
1 0500
2 005000
3 000500
4 00003000000000000000000000000000002000000000000000
5 00000500
6 0000005000
7 0000000500
8 000000005000
9 000000000500
0 00000000005000000000000000000000000000000000000000
1 00000000000500000000000000000000000000000000000000
2 00000000000050000000000000000000000000000000000000
3 00000000000005000000000000000000000000000000000000
4 00000000000000500000000000000000000000000000000000
5 00000000000000050000000000000000000000000000000000
6 00000000000000005000000000000000000000000000000000
7 00000000000000000500000000000000000000000000000000
8 00000000000000000050000000000000000000000000000000
9 00000000000000000005000000000000000000000000000000
o 0000000000000000000500000000000000000000000000000
1 00000000000000000000050000000000000000000000000000
2 00000000000000000000005000000000000000000000000000
3 0000000000000000000000500000000000000000000000000
4 00000000000000000000000040000001000000000000000000
5 00000000000000000000000005000000000000000000000000
6 00000000000000000000000000310000000001000000000000
7 00000000000000000000000000140000000000000000000000
8 00000000000000000000000000015000000000000000000000
9 00000000000000000000000000000500000000000000000000
o 00000000000000000000000000000050000000000000000000
1 00000000000000000000000000000005000000000000000000
2 00000000000000000000000000000000500000000000000000
3 00000000000000000000000000000000050000000000000000
4 00000000000000000000000000000000005000000000000000
5 00000000000000000000000000000000000500000000000000
6 00000000000000000000000000000000000050000000000000
7 00000000000000000000000000000000000005000000000000
8 00000000000000000000000000000000000000500000000000
9 00000000000000000000000000000000000000050000000000
o 005000000000
1 000500000000
2 0050000000
3 0005000000
4 00000000000000200000000000000000001000000000200000
5 00050000
6 005000
7 000500
8 0050
9 0005
FIGURE 26. TRAINING DATA UNIFORM ALGORITHM (8 SLICE)

83

-" """" - - . -.......... .. - -'._ . L

7 7\ - ,
. ". ":.--" .

0 30000000002000000000000000000000000000000000000000
1 0500
2 005000
3 00040000000000000000000000000000010000000000000000
4 00003000000000000000000000000000101000000000000000
5 00000400000000000000000000000000000100000000000000
6 0000005000
7 0000000500
8 000000005000
9 000000000500
0 00000000005000000000000000000000000000000000000000
1 00000000000500000000000000000000000000000000000000
2 00000000000050000000000000000000000000000000000000
3 00000000000005000000000000000000000000000000000000
4 00000000000000400000000000000000001000000000000000
5 00000000000000040001000000000000000000000000000000
6 00000000000000005000000000000000000000000000000000
7 00000000000000000500000000000000000000000000000000
8 00000000000000000050000000000000000000000000000000
9 00000000000000000005000000000000000000000000000000
0 00000000000000000000500000000000000000000000000000
1 00000000000000000000030000000002000000000000000000
2 00000000000000000000005000000000000000000000000000
3 00000000000000000000000500000000000000000000000000
4 00000000000000000000000050000000000000000000000000
5 00000000000000000000000003000000000200000000000000
6 00000000000000000000000000130000000000000000000100
7 00000000000000000000000000130000000000000000000100
8 00000000000000000000000000005000000000000000000000
9 00000000000000000000000000000500000000000000000000
0 00000000000000000000000000000040100000000000000000
1 00000000000000000000000000000005000000000000000000
2 00000000000000000000000000000000500000000000000000
3 00000000000000000000000000000000050000000000000000
4 00000000000000300000000000000000002000000000000000
5 00000000000000000000000000000000000400000000010000
6 00000000000000000000000000000000000050000000000000
7 00000000000000000000000000000000000012000000000200
8 00000000000000000000000000000000000000500000000000
9 00000000000000000000000000000000000000050000000000
0 00000000000000000000000000000010000000004000000000
1 000500000000
2 0050000000

.'."3 00010000000000000000000000000000000000000004000000
"! "'4 00000000000000300000000010000000001000000000000000

.- "5 00050000
6 005000
7 000500
8 0050
9 0005
FIGURE 27. CONTROL DATA UNIFORM ALGORITHM (8 SLICE)

84

,1

'.'4' <."-'"'- ' " " " " " " . . " -

-. °, .7i-.

APPENDIX D

PROGRAMS

85". " " " . .-%. • - . .'J.-S " .- " . " , . " " , . " - " -S, , -,, , .

- :....

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INIT
OBJECT MODULE PLACED IN :FI:INIT.OBJCOMPILER INVOKED BY: PLM80 :FI:INIT.SRC
INIT: DO;

/* THIS PROGRAM LOADS THE SAMPLES TO BE USED AS */
/* TEMPLATES FOR THE WORD RECOGNITION PROGRAM */
CO: PROCEDURE(CHAR) EXTERNAL;

DECLARE CHAR BYTE;
END CO;
CI: PROCEDURE BYTE EXTERNAL;
END CI;
EXIT: PROCEDURE EXTERNAL;
END EXIT;
SAMP: PROCEDURE EXTERNAL;
END SAMP;
DECLARE DATOPT ADDRESS;
DECLARE DATIPT ADDRESS;
DECLARE DAT2PT ADDRESS;
DECLARE DAT3PT ADDRESS;
DECLARE DAT4PT ADDRESS;
DECLARE DAT5PT ADDRESS;
DECLARE DAT6PT ADDRESS;
DECLARE DAT7PT ADDRESS;
DECLARE DATO BASED DATOPT (128) BYTE;
DECLARE DATI BASED DATIPT (128) BYTE;
DECLARE DAT2 BASED DAT2PT (128) BYTE;
DECLARE DAT3 BASED DAT3PT (128) BYTE;
DECLARE DAT4 BASED DAT4PT (128) BYTE;
DECLARE DAT5 BASED DAT5PT (128) BYTE;
DECLARE DAT6 BASED DAT6PT (128) BYTE;
DECLARE DAT7 BASED DAT7PT (128) BYTE;
DECLARE PT BYTE;
DECLARE DP BYTE;
DECLARE FATOPT ADDRESS;
DECLARE FATO BASED FATOPT (1000)BYTE;
DECLARE SAM BYTE;
DECLARE BANK BYTE;
DECLARE I BYTE;
DATOPT=OAOO0H;
DATIPT=OA080H;
DAT2PT=OA1OH;
DAT3PT=OA180H;

DAT4PT=OA20OH;
DAT5PT=OA280H;
DAT6PT=OA30OH;
DAT7PT=OA380H;
FATOPT-O6800H;

8

V B6

-- .. - 7-

.t./* INPUT THE SAMPLE NUMBER AND THE DIGIT TO BE STORED *
START: CALL CO(23H);

BANK=CI AND 7FH;
CALL CO(BANK);
IF BANK=lAH THEN CALL EXIT; /* CONTROL Z *
CALL CO(3FH);
SAM=CI AND 7FH;
CALL CO(SAM);
IF SAM=1AH THEN CALL EXIT; /* CONTROL Z *
CALL SAMP;

/* MOVE THE TIME SLICES TO THE CORRECT LOCATIONS *
/* IN MEMORY *
SAM=SAM-30H;
BANK=BANK-3 OH;
DO I=0 TO 31;

PT=I*8;
DP=I *4;
FATO((BANK*1O+SAM)*256+PT)=DATO(DP);
FATO((BANK*1O+SAM) *256+PT+1)=DAT1(DP);
FATO((BANK*10+SAM)*256+PT+2)=DAT2(DP);
FATO((BANK*1O+SAM)*256+PT+3)=DAT3(DP);
FATO((BANK*1O+SAM)*256+PT+4)=DAT4(DP);
FATO((BANK*1O+SAM) *256+PT+5)=DATS(DP);
FATO((BANK*1O+SAM) *256+PT+6)=DAT6(DP);
FATO((BANK*10+SAM)*256+PT+7)=DAT7(DP);

END;
GOTO START;
END INIT;
MODULE INFORMATION:
CODE AREA -'TZE = 025DH 605D
VARIABLE AREA SIZE = 0017H 23D
MAXIMUM STACK SIZE = 0006H 6D
75 LINES READ
O PROGRAM ERROR(S)
END OF PL/M-80 COMPILATION

87

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE EAR
OBJECT MODULE PLACED IN :FI:EAR.OBJ
COMPILER INVOKED BY: PLM80 :FI:EAR.SRC
EAR: DO;
/* THIS PROGRAM IS THE WORD RECOGNITION PROGRAM */
EXIT: PROCEDURE EXTERNAL;
END EXIT;
SAMP: PROCEDURE EXTERNAL;
END SAMP;
DIF3: PROCEDURE (SQPT) EXTERNAL;

DECLARE SQPT ADDRESS;
END DIF3;
CSTS: PROCEDURE BYTE EXTERNAL;
END CSTS;
DECLARE DATOPT ADDRESS;
DECLARE DATIPT ADDRESS;
DECLARE DAT2PT ADDRESS;
DECLARE DAT3PT ADDRESS;
DECLARE DAT4PT ADDRESS;
DECLARE DAT5PT ADDRESS;
DECLARE DAT6PT ADDRESS;
DECLARE DAT7PT ADDRESS;
DECLARE DATO BASED DATOPT (128) BYTE;
DECLARE DATI BASED DATIPT (128) BYTE;
DECLARE DAT2 BASED DAT2PT (128) BYTE;
DECLARE DAT3 BASED DAT3PT (128) BYTE;
DECLARE DAT4 BASED DAT4PT (128) BYTE;
DECLARE DATS BASED DATSPT (128) BYTE;
DECLARE DAT6 BASED DAT6PT (128) BYTE;
DECLARE DAT7 BASED DAT7PT (128) BYTE;
DECLARE PT BYTE;
DECLARE DP BYTE;
DECLARE GATOPT ADDRESS;
DECLARE GATO BASED GATOPT (256) BYTE;
DECLARE I BYTE;
DECLARE LINEAR (256)ADDRESS;
GATOPT=OCOOOH;
DATOPT=OAOOOH;
DATIPT=OA080H;
DAT2PT=OAI00H;
DAT3PT=OA18OH;
DAT4PT=OA2OOH;
DAT5PT=OA280H;
DAT6PT=OA30OH;
DAT7PT=OA380H;

DO I=O TO 255;
LINEAR(I)=I;

END;

88

START: CALL SAMP;

DO 1=0 TO 31;
PT=I*4;N DP=I*8;
GATO(DP)=DATO(PT);
GATO(DP+1)=DAT1(PT);
GATO(DP+2)=DAT2(PT);
GATO(DP+3)=DAT3(PT);
GATO(DP+4)=DAT4(PT);
GATO(DP+5)=DAT5(PT);
GATO(DP+6)=DAT6(PT);K GATO(DP+7)=DAT7(PT);

END;
CALL DIF3(.LINEAR(0));
IF CSTS=OFFH THEN CALL EXIT;
GOTO START;
END EAR;
MODULE INFORMATION:
CODE AREA SIZE =O16EH 366D
VARIABLE AREA SIZE = 0215H 533D
MAXIMUM STACK SIZE = 0002H 2D
65 LINES READ
O PROGRAM ERROR(S)
END OF PL/M-80 COMPILATION

89

AD- A132 475 A COST CONSTRAINED SPEECH RECOGNITION SYSTEMS(U) AIR ..
FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
W F DAVIDSON AUG 83 AFIT/C/R8F -1

UNCLASSIFIED F/G 17.2 NL

[m

W 1122 j.M

EM'

I iiin ,____.o EL
1j.

11111125 EI=IA= *L6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

4: . . '- .i .. ;.. - - ,. . . . - . " -' , ,. - , - , . ,. . - .. , . . : .,.., . ',- . ,,.. . , ,. . -

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE DIFF
OBJECT MODULE PLACED IN :Fl:DIF3.OBJ
COMPILER INVOKED BY: PLM80 :Fl:DIF3.SRC
DIFF: DO;
/* THIS PROCEDURE PERFORMS THE DYNAMIC PROGRAM MATCH */
EXIT: PROCEDURE EXTERNAL;
END EXIT;
CO: PROCEDURE(CHAR) EXTERNAL;

DECLARE CHAR BYTE;
END CO;
DIF3: PROCEDURE (SQPT) PUBLIC;
DECLARE N BYTE;
DECLARE PT BYTE;
DECLARE MIN(3) BYTE;
DECLARE NUM BYTE;
DECLARE NSAM BYTE;
DECLARE LP BYTE;
DECLARE P BYTE;
DECLARE R ADDRESS;
DECLARE CHAN BYTE;
DECLARE DIFF(3) ADDRESS;
DECLARE ERROR (32) ADDRESS;
DECLARE ERRC (32) ADDRESS;
DECLARE THRES(16) ADDRESS;
DECLARE TEMP ADDRESS;
DECLARE ANS (32) BYTE;
DECLARE SAMPPT ADDRESS;
DECLARE REFPT ADDRESS;
DECLARE SAMP BASED SAMPPT (128) BYTE;
DECLARE REF BASED REFPT (4096) BYTE;
DECLARE WEIGHT (8) BYTE;
DECLARE RVAL ADDRESS;
DECLARE LPVAL ADDRESS;
DECLARE NUMVAL ADDRESS;
DECLARE SQPT ADDRESS;
DECLARE SQUARE BASED SQPT (256) ADDRESS;
DECLARE VARI BYTE;
DECLARE VAR2 BYTE;
DECLARE RMAX BYTE;
SAMPPT=OCOOOH;
REFPT=06800H;

THRES(O)=040;
THRES(1)=060;
THRES(2)=080;
THRES(3)=100;
THRES(4)=120;
THRES(5)=140;
THRES(6)=160;

S90

.o*r-. % - % *. - *. . o . . •- - -

.

THRES(7)=180;
THRES(8)=200;
THRES(9)=220;
THRES(1O)240;
THRES(11)=260;
THRES(12)=280;
THRES(13)=300;
THRES(14) =320;
THRES(15)=340;

WEIGHT(0)=2;
WE IGHT (1) =2;
WEIGHT(2)=O;
WEIGHT(3)0O;
WE IGHT (4)= 1;
WEIGHT(5)1J;
WE I HT (6)= 1;
WEIGHT(7)0O;

DO R0O TO 29;
ERROR(R)0O;
ERRC(R)=0;
RVAL-SHL(R,8);
RI AX=15;
LP=O;
DO NUM=O TO 15 BY 2;

NUMVAL=SHL(NUM, 3);
DO P=0 TO 2;

LPVAL=RVAL+SHL ((LP+P) ,3);
DIFF(P)0O;
DO CHAN=O TO 7;

VAR1= REF(LPVAL+CHAN);
VAR2=SAMP (NUMVAL+CHAN);
IF VAR1<VAR2 THEN TEMP=VAR2-VAR1;

* ELSE TEMP=VARJ.VAR2;
END DIFF(P)=DIFF(P)+SHR(SQUARE(TEMP),WEIGHT(CHAN));

FINI:
END;
IF DIFF(1)<=DIFF(O) AND DIFF(1)<=DIFF(2) THEN DO;

ERROR(R)=ERROR(R) +DIFF(1);
LP=LP+2;

GOOST;

IF DIFF(2)<=DIFF(O) AND DIFF(2)<=DIFF(l) THEN DO;
ERROR(R)=ERROR(R)+DIFF(2);
LP=LP+4;
GOTO ST;

END,

91

ELSE DO;
ERROR(R)=ERROR(R) +DIFF(O);
LP=LP+O;
GOTO ST;

END;
/* CHECK TO SEE IF YOU HAVE REACHED THE END OF THE REFERENCE *

ST: IF NUM>=RMAX THEN GOTO TERMIN;

IF ERROR(R)>=THRES(NUM) THEN DO;
CALL CO(28H);
CALL CO(30H+R);
CALL CO(3AH);
CALL CO(NUM+30H);
CALL CO(29H);
ERROR(R) =65530;
GOTO STP;

END;
END;
GOTO STP;
TERMIN: ERROR(R)=ERROR(R)/NUM*NSAM;
STP:

END;

DO N=0 TO 2;
MIN(N)=0;
DO PT1l TO 29;

IF ERRC(PT)<ERRC(MIN(N)) THEN DO;
MIN(N)=PT;
GOTO LP;

END;
IF ERRC(PT)=ERRC(MIN(N)) THEN DO;

IF ERROR(PT)<ERROR(MIN(N)) THEN DO;
MIN(N)=PT;

END;
END;

LP:
END;
ERRC(MIN(N))ERRC(MIN(N))+1OH;

END;

S92

IF ERROR(MIN(O))>65000 THEN DO;
IF ERROR(MIN(1))>65000 THEN DO;

IF ERROR(MIN(2))>65000 THEN DO;
CALL CO(4EH);
CALL CO(4FH);
CALL CO(4EH);
CALL CO(45H);
GOTO FO;

END;
END;

END;

DO N=O TO 1;
IF MIN(O)>9 THEN MIN(O)=MIN(O)-10;
IF MIN(1)>9 THEN MIN(1)=MIN(1)-10;
IF MIN(2)>9 THEN MIN(2)=MIN(2)-10;

END;mI
IF MIN(1)=MIN(2) THEN GOTO P1;

CALL CO(30H+MIN(O));
GOTO FO;
P1: CALL CO(30H+MIN(1));
FO: ;
CALL CO(ODH);
CALL CO(OAH);

END DIF3;
END DIFF;

MODULE INFORMATION:
CODE AREA SIZE = 047EH i150D
VARIABLE AREA SIZE = OEBH 235D
MAXIMUM STACK SIZE = 0006H 6D
167 LINES READ
0 PROGRAM ERROR(S)
END OF PL/M-80 COMPILATION

93

ISIS-II 8080/8085 MACRO ASSEMBLER
LINE SOURCE STATEMENT

1 NAME SAMP
2 ORG 9000H
3 PUBLIC SAMP
4;
5 ; THIS ROUTINE INPUTS 128 SAMPLES OF EACH OF
6; THE 8 CHANNELS AT 10 MS INTERVALS AFTER THE
7 ; THRESHOLD IS REACHED
8;
9 SAMP:
10 ST: IN OCFH
11 CPI 20H ;COMPARE CHANNEL 8 TO THRES
12 JC ST ;WAIT FOR THRESHOLD
13 MVI D,O
14 MVI E,80H
15 LP: MVI H,OAOH
16 MOV L,D
17 IN OC8H ;INPUT CHANNEL 1
18 MOV M,A
19 MOV L,E
20 IN OC9H ;INPUT CHANNEL 2
21 MOV M,A
22 MVI HOA1H
23 MOV L,D
24 IN OCAH ;INPUT CHANNEL 3
25 MOV M,A
26 MOV L,E
27 IN OCBH ;INPUT CHANNEL 4
28 MOV M,A
29 MVI HOA2H
30 MOV L, D
31 IN OCCH ;INPUT CHANNEL 5
32 MOV M,A
33 MOV L,E
34 IN OCDH ;INPUT CHANNEL 6
35 MOV M,A
36 MVI HOA3H
37 MOV L,D
38 IN OCEH ;INPUT CHANNEL 7

" 39 MOV M,A
40 MOV L,E
41 IN OCFH ;INPUT CHANNEL 8
42 MOV M,A
43 MVI B,OFFH ;DELAY

94

- ' -. . . .- .. °o- .. • . -.-* . - * -.... . . . - •

44 Dl: DCR B
45 JNZ Dl
46 MVI B,OFFH ;DELAY
47 D2: DCR B
48 JNZ D2
49 MVI B,OFFH ;DELAY
50 D3: DCR B
51 JNZ D3
52 INR D ; INCREMENT POINTER
53 INR E ;INCREMENT POINTER
54 JNZ LP ;WAIT FOR 128 SAMPLES
55 RET
56 END
PUBLIC SYMBOLS
SAMP A 9000
EXTERNAL SYMBOLS
USER SYMBOLS
DI A 9035 D2 A 903B D3 A 9041
LP A 900B SAMP A 9000 ST A 9000
ASSEMBLY COMPLETE, NO ERRORS

*9

-J

4

-. 4-s95

; ., 2,,,, .' .' ,2€ .'' . ,, " ." "," " ." - ". .* " . " . """""". """ " . " .*"". . -. " . , """"" " - " -

*
A*

*1
4A

I A

ITT 4t.,pp

f.4 FIL

*P

01 .1'

V~ ncl

fit

i. 4 -v-

